Skip to main content

The Importance of Understanding the Stress Response in Foodborne Pathogens Along the Food Production Chain

  • Chapter
  • First Online:
Stress Responses of Foodborne Pathogens

Abstract

Foodborne pathogenic bacteria encounter various environmental stressors along the food production chain, including production, processing, storage, distribution, and preparation. Bacteria are able to initiate a sophisticated regulatory network and alter the expression of proteins and genes to respond to external stressors. This can help bacteria survive under harsh conditions, which may lead to bacterial residue in foods. Furthermore, the development of a bacterial stress response might induce cross protection against other stresses and enhance pathogenicity, which could pose potential risks to food safety and public health. Therefore, a comprehensive and adequate understanding of the molecular mechanisms underlying the stress response of foodborne pathogens is important for the development and rational design of effective sterilization processing to ensure food safety with maximum preservation of food quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adhikari A, Bary A, Cogger C et al (2016) Thermal and starvation stress response of Escherichia coli O157:H7 isolates selected from agricultural environments. J Food Protect 79(10):1673–1679

    Article  Google Scholar 

  • Agbaje M, Begum RH, Oyekunle MA et al (2011) Evolution of Salmonella nomenclature: a critical note. Folia Microbiol 56(6):497–503

    Article  CAS  Google Scholar 

  • Ágoston R, Soni K, Jesudhasan PR et al (2009) Differential expression of proteins in Listeria monocytogenes under thermotolerance-inducing, heat shock, and prolonged heat shock conditions. Foodborne Pathog Dis 6(9):1133–1140

    Article  PubMed  CAS  Google Scholar 

  • Alreshidi MM, Dunstan RH, Macdonald MM et al (2015) Metabolomic and proteomic responses of Staphylococcus aureus to prolonged cold stress. J Proteome 121:44–55

    Article  CAS  Google Scholar 

  • Álvarez-Ordóñez A, Fernández A, Bernardo A et al (2009a) Comparison of acids on the induction of an acid tolerance response in Salmonella Typhimurium, consequences for food safety. Meat Sci 81(1):65–70

    Article  PubMed  CAS  Google Scholar 

  • Álvarez-Ordóñez A, Fernández A, Bernardo A et al (2009b) A comparative study of thermal and acid inactivation kinetics in fruit juices of Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Senftenberg grown at acidic conditions. Foodborne Pathog Dis 6:1147–1155

    Article  PubMed  CAS  Google Scholar 

  • Álvarez-Ordóñez A, Begley M, Prieto M et al (2011) Salmonella spp. survival strategies within the host gastrointestinal tract. Microbiology 157(12):3268–3281

    Google Scholar 

  • Álvarez-Ordóñez A, Prieto M, Bernardo A et al (2012) The acid tolerance response of Salmonella spp.: an adaptive strategy to survive in stressful environments prevailing in foods and the host. Food Res Int 45(2):482–492

    Article  Google Scholar 

  • Alves N, Rui M, Brando T et al (2020) Impact of exposure to cold and cold-osmotic stresses on virulence-associated characteristics of Listeria monocytogenes strains. Food Microbiol 87:103351

    Article  CAS  PubMed  Google Scholar 

  • Anastasiadou M, Michailidis G (2016) Cytokine activation during embryonic development and in hen ovary and vagina during reproductive age and Salmonella infection. Res Vet Sci 109:86–93

    Article  CAS  PubMed  Google Scholar 

  • Andersen JB, Roldgaard BB, Christensen BB et al (2007) Oxygen restriction increases the infective potential of Listeria monocytogenes in vitro in Caco-2 cells and in vivo in guinea pigs. BMC Microbiol 7:55

    Article  CAS  Google Scholar 

  • Anderson KL, Roberts C, Disz T et al (2006) Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188(19):6739–6756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel D, Ellermeier J, Pryjma M et al (2012) Characterization of Campylobacter jejuni RacRS reveals roles in the heat shock response, motility, and maintenance of cell length homogeneity. J Bacteriol 194(9):2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arcari T, Feger ML, Guerreiro DN et al (2020) Comparative review of the responses of Listeria monocytogenes and Escherichia coli to low pH stress. Genes 11(11):1330

    Article  CAS  PubMed Central  Google Scholar 

  • Asao T, Kumeda Y, Kawai T et al (2003) An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol Infect 130(1):33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Askoura M, Youns M, Hegazy WAH (2020) Investigating the influence of iron on Campylobacter jejuni transcriptome in response to acid stress. Microb Pathog 138:103777

    Article  CAS  PubMed  Google Scholar 

  • Ávila ARAD, Marques SC, Piccolli RH et al (2013) Sensitivity to organic acids in vitro and in situ of Salmonella spp. And Escherichia coli isolated from fresh pork sausages. J Food Qual 36(3):155–163

    Article  CAS  Google Scholar 

  • Azizoglu RO, Drake M (2007) Impact of antibiotic stress on acid and heat tolerance and virulence factor expression of Escherichia coli O157:H7. J Food Prot 70(1):194–199

    Article  CAS  PubMed  Google Scholar 

  • Bae YM, Lee SY (2017) Effect of salt addition on acid resistance response of Escherichia coli O157:H7 against acetic acid. Food Microbiol 65:74–82

    Article  CAS  PubMed  Google Scholar 

  • Baek KT, Vegge CS, Skórko-Glonek J et al (2011) Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology. Appl Environ Microbiol 77(1):57–66

    Article  CAS  PubMed  Google Scholar 

  • Balaji B, O'connor K, Lucas JR et al (2005) Timing of induction of osmotically controlled genes in Salmonella enterica serovar Typhimurium, determined with quantitative real-time reverse transcription-PCR. Appl Environ Microbiol 71(12):8273–8283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrero-Tobon AM, Hendrixson DR (2012) Identification and analysis of flagellar coexpressed determinants (feds) of Campylobacter jejuni involved in colonization. Mol Microbiol 84:352–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beeby M, Ribardo DA, Brennan CA et al (2016) Diverse hightorque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc Natl Acad Sci U S A 113:E1917–E1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley M, Hill C (2015) Stress adaptation in foodborne pathogens. Annu Rev Food Sci Technol 6(1):191–210

    Article  CAS  PubMed  Google Scholar 

  • Bera A, Biswas R, Herbert S et al (2007) Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus. J Bacteriol 189(1):280–283

    Article  CAS  PubMed  Google Scholar 

  • Beuchat LR, Worthington RE (1976) Relationships between heat resistance and phospholipid fatty acid composition of Vibrio parahaemolyticus. Appl Environ Microbiol 31(3):389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaser MJ, Sazie E, Williams LP (1987) The influence of immunity on raw milk-associated Campylobacter infection. JAMA 257(1):43–46

    Article  CAS  PubMed  Google Scholar 

  • Boehm M, Hoy B, Rohde M et al (2012) Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin. Gut Pathog 4:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehm M, Lind J, Backert S et al (2015) Campylobacter jejuni serine protease HtrA plays an important role in heat tolerance, oxygen resistance, host cell adhesion, invasion, and transmigration. Eur J Microbiol Immunol 5(1):68–80

    Google Scholar 

  • Bore E, Langsrud S, Langsrud Ø et al (2007) Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis. Microbiology 153(7):2289–2303

    Article  CAS  PubMed  Google Scholar 

  • Broberg CA, Calder TJ, Orth K (2011) Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect 13(12–13):992–1001

    Google Scholar 

  • Brøndsted L, Andersen MT, Parker M et al (2005) The HtrA protease of Campylobacter jejuni is required for heat and oxygen tolerance and for optimal interaction with human epithelial cells. Appl Environ Microbiol 71(6):3205–3212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buchanan RL, Edelson SG (1999) pH-dependent stationary-phase acid resistance response of Enterohemorrhagic Escherichia coli in the presence of various acidulants. J Food Prot 62(3):211–218

    Article  CAS  PubMed  Google Scholar 

  • Cameron A, Frirdich E, Huynh S et al (2012) Hyperosmotic stress response of Campylobacter jejuni. J Bacteriol 194(22):6116–6130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caron E, Crepin VF, Simpson N et al (2006) Subversion of actin dynamics by EPEC and EHEC. Curr Opin Microbiol 9(1):40–45

    Article  CAS  PubMed  Google Scholar 

  • CDC (2011) Estimated annual number of episodes of illnesses caused by 31 pathogens transmitted commonly by food, United States. https://www.cdc.gov/foodborneburden/pdfs/scallan-estimated-illnesses-foodborne-pathogens.pdf. Accessed 08 Mar 2021

  • CDC (2019) Campylobacter (Campylobacteriosis). https://www.cdc.gov/campylobacter/outbreaks/outbreaks.html. Accessed 08 Mar 2021

  • CDC (2021a) Listeria (Listeriosis). https://www.cdc.gov/listeria/. Accessed 08 Mar 2021

  • CDC (2021b) Vibrio species causing Vibriosis. https://www.cdc.gov/vibrio/faq.html. Accessed 08 Mar 2021

  • CDC (2021c). Prevent illness from C. perfringens. https://www.cdc.gov/foodsafety/diseases/clostridium-perfringens.html Accessed 08 Mar 2021

  • Cebrián G, Condón S, Maas P (2009) Heat-adaptation induced thermotolerance in Staphylococcus aureus: influence of the alternative factor σ B. Int J Food Microbiol 135(3):274–280

    Article  PubMed  CAS  Google Scholar 

  • Cebrián G, Arroyo C, Condón S et al (2015) Osmotolerance provided by the alternative sigma factors σB and rpoS to Staphylococcus aureus and Escherichia coli is solute dependent and does not result in an increased growth fitness in NaCl containing media. Int J Food Microbiol 214:83– 90

    Article  PubMed  CAS  Google Scholar 

  • Chaibenjawong P, Foster SJ (2011) Desiccation tolerance in Staphylococcus aureus. Arch Microbiol 193(2):125–135

    Article  CAS  PubMed  Google Scholar 

  • Chan YC, Hu Y, Chaturongakul S et al (2008) Contributions of two-component regulatory systems, alternative σ factors, and negative regulators to Listeria monocytogenes cold adaptation and cold growth. J Food Prot 71(2):420–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlebois A, Jacques M, Boulianne M et al (2017) Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry. Food Microbiol 62:32–38

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Cui S, McDermott PF et al (2007) Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar Typhimurium to fluoroquinolones and other antimicrobials. Antimicrob Agents Chemother 51(2):535–542

    Article  CAS  PubMed  Google Scholar 

  • Chiang ML, Yu RC, Chou CC (2005) Fatty acid composition, cell morphology and responses to challenge by organic acid and sodium chloride of heat-shocked Vibrio parahaemolyticus. Int J Food Microbiol 104(2):179–187

    Article  CAS  PubMed  Google Scholar 

  • Chiang ML, Ho WL, Chou CC (2006) Response of Vibrio parahaemolyticus to ethanol shock. Food Microbiol 23(5):461–467

    Article  CAS  PubMed  Google Scholar 

  • Collazo CM, Galán JE (1997) The invasion-associated type III system of Salmonella Typhimurium directs the translocation of sip proteins into the host cell. Mol Microbiol 24(4):747–756

    Article  CAS  PubMed  Google Scholar 

  • Conte M, Petrone G, Di Biase A et al (2000) Acid tolerance in Listeria monocytogenes influences invasiveness of enterocyte-like cells and macrophage-like cells. Microb Pathogenesis 29(3):137–144

    Article  CAS  Google Scholar 

  • Cooper KK, Songer JG (2009) Necrotic enteritis in chickens: a paradigm of enteric infection by Clostridium perfringens type A. Anaerobe 15(1–2):55–60

    Article  PubMed  Google Scholar 

  • Cossart P (2011) Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes. Proc Natl Acad Sci USA 108(49):19484–19491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cróinín TÓ, Backert S (2012) Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism? Front Cell Infect Microbiol 2:25

    Article  Google Scholar 

  • Dai X, Zhu M (2018) High osmolarity modulates bacterial cell size through reducing initiation volume in Escherichia coli. mSphere 3(5):e00430–e00418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dallmier AW, Martin SE (1988) Catalase and superoxide dismutase activities after heat injury of Listeria monocytogenes. Appl Environ Microbiol 54(2):581–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darveau RP, Hancock RE (1983) Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella Typhimurium strains. J Bacteriol 155(2):831–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jong HK, Parry CM, van der Poll T et al (2012) Host-pathogen interaction in invasive salmonellosis. PLoS Pathog 8(10):e1002933

    Article  PubMed  PubMed Central  Google Scholar 

  • ECDC (2019) Salmonella the most common cause of foodborne outbreaks in the European Union. https://www.ecdc.europa.eu/en/news-events/salmonella-most-common-cause-foodborne-outbreaks-european-union. Accessed 08 Mar 2021

  • EFSA (2018) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J 16(12):e05500

    Google Scholar 

  • Eglezos S, Dykes GA, Huang B, Turner MS, Seale R (2013) Genetic characterization of Listeria monocytogenes isolates from food processing facilities before and after Postcook chiller heat treatment. J Food Prot 76(8):1466–1470

    Article  CAS  PubMed  Google Scholar 

  • Elvira FA, Pardío-Sedas VT, Herrera DM, Castro RQ, Elvira KR (2020) Comparative survival and the cold-induced gene expression of pathogenic and nonpathogenic Vibrio parahaemolyticus from tropical eastern oysters during cold storage. Int J Environ Res Public Health 17(6):1836

    Article  CAS  Google Scholar 

  • Endo Y, Tsurugi K, Yutsudo T et al (1988) Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes: RNA N-glycosidase activity of the toxins. Eur J Biochem 171(1–2):45–50

    Article  CAS  PubMed  Google Scholar 

  • Fàbrega A, Vila J (2013) Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 26(2):308–341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Finn S, Rogers L, Händler K, McClure P, Amézquita A, Hinton JC et al (2015) Exposure of Salmonella enterica serovar Typhimurium to three humectants used in the food industry induces different osmoadaptation systems. Appl Environ Microbiol 81(19):6800–6811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher CW, Lee D, Dodge BA et al (2000) Influence of catalase and superoxide dismutase on ozone inactivation of Listeria monocytogenes. Appl Environ Microbiol 66(4):1405–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster TJ (2017) Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev 41(3):430–449

    Article  CAS  PubMed  Google Scholar 

  • Frossard SM, Khan AA, Warrick EC, Gately JM, Hanson AD, Oldham ML et al (2012) Identification of a third osmoprotectant transport system, the osmU system, in Salmonella enterica. J Bacteriol 194(15):3861–3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Futoma-Kołoch B, Bugla-Płskońska G, Dudek B et al (2019) Outer membrane proteins of Salmonella as potential markers of resistance to serum, antibiotics and biocides. Curr Med Chem 26(11):1960–1978

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Galán JE (1998) The Salmonella Typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol Microbiol 27(2):359–368

    Article  CAS  PubMed  Google Scholar 

  • García S, Heredia N (2011) Clostridium perfringens: a dynamic foodborne pathogen. Food Bioprocess Technol 4:624–630

    Google Scholar 

  • Garcia J, Beingesser J, Fisher D, Sayeed S, McClane B, Posthaus H et al (2012) The effect of Clostridium perfringens type C strain CN3685 and its isogenic beta toxin null mutant in goats. Vet Microbiol 157(3–4):412–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaupp R, Ledala N, Somerville GA (2012) Staphylococcal response to oxidative stress. Front Cell Infect Microbiol 2:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Gayán E, Cambré A, Michiels CW et al (2016) Stress-induced evolution of heat resistance and resuscitation speed in Escherichia coli O157:H7 ATCC 43888. Appl Environ Microbiol 82:6656–6663

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goossens E, Valgaeren BR, Pardon B et al (2017) Rethinking the role of alpha toxin in Clostridium perfringens-associated enteric diseases: a review on bovine necro-haemorrhagic enteritis. Vet Res 48(1):1–17

    Article  CAS  Google Scholar 

  • Graham JE, Wilkinson BJ (1992) Staphylococcus aureu Rethinking the role of alpha toxin in Clostridium perfringens-associated enteric diseases: a review on bovine necro-haemorrhagic enteritis osmoregulation: roles for choline, glycine betaine, proline, and taurine. J Bacteriol, 174(8), 2711–2716

    Google Scholar 

  • Grant C, Konkel M, Cieplak W, Tompkins L (1993) Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Infect Immun 61(5):1764–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin PM, Tauxe RV (1991) The epidemiology of infections caused by Escherichia coli O157: H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev 13(1):60–98

    Article  CAS  PubMed  Google Scholar 

  • Guibourdenche M, Roggentin P, Mikoleit M et al (2010) Supplement 2003-2007 (no. 47) to the white-Kauffmann-Le minor scheme. Res Microbiol 161(1):26–29

    Article  PubMed  Google Scholar 

  • Haraga A, Ohlson MB, Miller SI (2008) Salmonellae interplay with host cells. Nat Rev Microbiol 6(1):53–66

    Article  CAS  PubMed  Google Scholar 

  • Harrer A, Bucker R, Boehm M et al (2019) Campylobacter jejuni enters gut epithelial cells and impairs intestinal barrier function through cleavage of occludin by serine protease HtrA. Gut Pathog 11:4

    Google Scholar 

  • Harris SM, Yue WF, Olsen SA et al (2012) Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157:H7. Int J Food Microbiol 159(3):186–192

    Article  CAS  PubMed  Google Scholar 

  • He S, Cui Y, Qin X et al (2018) Influence of ethanol adaptation on Salmonella enterica serovar Enteritidis survival in acidic environments and expression of acid tolerance-related genes. Food Microbiol 72:193–198

    Article  CAS  PubMed  Google Scholar 

  • He S, Qin X, Wong CW et al (2019) Ethanol adaptation strategies in Salmonella enterica serovar Enteritidis revealed by global proteomic and mutagenic analyses. Appl Environ Microbiol 85:e01107–e01119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hejair HM, Zhu Y, Ma J et al (2017) Functional role of ompF and ompC porins in pathogenesis of avian pathogenic Escherichia coli. Microb Pathogenesis 107:29–37

    Article  CAS  Google Scholar 

  • Heras A, Cain RJ, Bielecka MK et al (2011) Regulation of listeria virulence: PrfA master and commander. Curr Opin Microbiol 14(2):118–127

    Article  PubMed  CAS  Google Scholar 

  • Heredia N, Labbe R, Garcia-Alvarado J (1998) Alteration in sporulation, enterotoxin production, and protein synthesis by Clostridium perfringens type A following heat shock. J Food Prot 61(9):1143–1147

    Article  CAS  PubMed  Google Scholar 

  • Heredia N, Ybarra P, Hernández C et al (2009) Extracellular protectants produced by Clostridium perfringens cells at elevated temperatures. Lett Appl Microbiol 48(1):133–139

    Article  CAS  PubMed  Google Scholar 

  • Horn N, Bhunia AK (2018) Food-associated stress primes foodborne pathogens for the gastrointestinal phase of infection. Front Microbiol 9:1962

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang YJ, Tsai TY, Pan TM (2007) Physiological response and protein expression under acid stress of Escherichia coli O157:H7 TWC01 isolated from Taiwan. J Agric Food Chem 55(17):7182

    Article  CAS  PubMed  Google Scholar 

  • Hughes RA, Hallett K, Cogan T et al (2009) The response of Campylobacter jejuni to low temperature differs from that of Escherichia coli. Appl Environ Microbiol 75(19):6292–6298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S, Joe A, Lynett J et al (2001) JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol 39:1225–1236

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Song YC, Emili A, Sherman PM, Chan VL (2003) JlpA of Campylobacter jejuni interacts with surface-exposed heat shock protein 90α and triggers signalling pathways leading to the activation of NF-κB and p38 MAP kinase in epithelial cells. Cell Microbiol 5(3):165–174

    Article  CAS  PubMed  Google Scholar 

  • Johler S, Layer F, Stephan R (2011) Comparison of virulence and antibiotic resistance genes of food poisoning outbreak isolates of Staphylococcus aureus with isolates obtained from bovine mastitis milk and pig carcasses. J Food Prot 74(11):1852–1859

    Article  CAS  PubMed  Google Scholar 

  • Johnson MD, Bell J, Clarke K et al (2014) Characterization of mutations in the PAS domain of the EvgS sensor kinase selected by laboratory evolution for acid resistance in Escherichia coli. Mol Microbiol 93(5):911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones TH, Murray A, Johns M et al (2006) Differential expression of proteins in cold-adapted log-phase cultures of Escherichia coli incubated at 8, 6 or 2°C. Int J Food Microbiol 107(1):12–19

    Article  CAS  PubMed  Google Scholar 

  • Katzif S, Danavall D, Bowers S et al (2003) The major cold shock gene, cspA, is involved in the susceptibility of Staphylococcus aureus to an antimicrobial peptide of human Cathepsin G. Infect Immun 71(8):4304–4312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenney LJ (2019) The role of acid stress in salmonella pathogenesis. Curr Opin Microbiol 47:45–51

    Article  CAS  PubMed  Google Scholar 

  • Khaitsa M, Oloya J, Doetkott D et al (2008) Antimicrobial resistance and association with class 1 integrons in Escherichia coli isolated from Turkey meat products. J Food Prot 71(8):1679–1684

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Kim CJ, Han SG et al (2014) Gastric fluid and heat stress response of Listeria monocytogenes inoculated on frankfurters formulated with 10%, 20%, and 30% fat content. Korean J Food Sci Anim Resour 34(1):20–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim GH, Fratamico P, Breidt F et al (2016) Survival and expression of acid resistance genes in Shiga toxin-producing Escherichia coli acid adapted in pineapple juice and exposed to synthetic gastric fluid. J Appl Microbiol 121(5):1416–1426

    Article  CAS  PubMed  Google Scholar 

  • Knudsen GM, Ng Y, Gram L (2013) Survival of bactericidal antibiotic treatment by a persister subpopulation of Listeria monocytogenes. Appl Environ Microbiol 79:7390–7397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konkel ME, Kim BJ, Klena JD et al (1998) Characterization of the thermal stress response of Campylobacter jejuni. Infect Immun 66(8):3666–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovač J, Šimunović K, Wu Z et al (2015) Antibiotic resistance modulation and modes of action of (-)-α-pinene in Campylobacter jejuni. PLoS One 10(4):e0122871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krause-Gruszczynska M, van Alphen LB, Oyarzabal OA et al (2007) Expression patterns and role of the CadF protein in Campylobacter jejuni and Campylobacter coli. FEMS Microbiol Lett 274(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Kubori T, Sukhan A, Aizawa S-I et al (2000) Molecular characterization and assembly of the needle complex of the Salmonella Typhimurium type III protein secretion system. Proc Natl Acad Sci U S A 97(18):10225–10230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhle V, Hensel M (2002) SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulate aggregation of endosomal compartments. Cell Microbiol 4(12):813–824

    Article  CAS  PubMed  Google Scholar 

  • Kwon Y, Park S, Birkhold S et al (2000) Induction of resistance of Salmonella Typhimurium to environmental stresses by exposure to short-chain fatty acids. J Food Sci 65(6):1037–1040

    Article  CAS  Google Scholar 

  • Lara-Tejero M, Galán JE (2001) CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect Immunity 69:4358–4365

    Article  CAS  Google Scholar 

  • Lebrun M, Mainil J, Linden A (2010) Cattle enterotoxaemia and Clostridium perfringens: description, diagnosis and prophylaxis. Vet Rec 167(1):13–22

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Ma R, Grimm MC et al (2014) Examination of the anaerobic growth of Campylobacter concisus strains. Int J Microbiol 2014:476047

    Article  PubMed  PubMed Central  Google Scholar 

  • Leenanon B, Elhanafi D, Drake MA (2003) Acid adaptation and starvation effects on Shiga toxin production by Escherichia coli O157:H7. J Food Prot 66(6):970–977

    Article  CAS  PubMed  Google Scholar 

  • Leyer G, Johnson E (1992) Acid adaptation promotes survival of Salmonella spp. in cheese. Appl Environ Microbiol 58(6):2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhou D, Hu S et al (2018) Transcriptomic analysis by RNA-seq of Escherichia coli O157:H7 response to prolonged cold stress. LWT 97:17–24

    Article  CAS  Google Scholar 

  • Liang Z, Ke B, Deng X et al (2015) Serotypes, seasonal trends, and antibiotic resistance of non-typhoidal Salmonella from human patients in Guangdong Province, China, 2009-2012. BMC Infect Dis 15(1):53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Limón J, Heredia N, Solís-Soto L et al (2011) Cold tolerance of Clostridium perfringens induced by food additives at neutral pH. Acta Aliment Hung 40(1):87–94

    Article  CAS  Google Scholar 

  • Liu J, Zhai L, Lu W et al (2017) Amino acid decarboxylase-dependent acid tolerance, selected phenotypic, and virulence gene expression responses of Salmonella enterica serovar Heidelberg. Food Res Int 92:33–39

    Article  PubMed  CAS  Google Scholar 

  • Loepfe C, Raimann E, Stephan R et al (2010) Reduced host cell invasiveness and oxidative stress tolerance in double and triple csp gene family deletion mutants of Listeria monocytogenes. Foodborne Pathog Dis 7(7):775

    Article  CAS  PubMed  Google Scholar 

  • Lorentzen G, Mennen S, Olsen RL, Skjerdal T (2011) Invasiveness of Listeria monocytogenes strains of Caco-2 cells in response to a period of extreme salt stress reflecting salt-curing and rehydration of cod (Gadus morhua L.). Food Control 22(7):1040–1045

    Article  CAS  Google Scholar 

  • Lowy FD (2003) Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 111(9):1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Liu Q, Wu D et al (2011) Using of infrared spectroscopy to study the survival and injury of Escherichia coli O157: H7, Campylobacter jejuni and Pseudomonas aeruginosa under cold stress in low nutrient media. Food Microbiol 28(3):537–546

    Article  CAS  PubMed  Google Scholar 

  • Marcus SL, Brumell JH, Pfeifer CG et al (2000) Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect 2(2):145–156

    Article  CAS  PubMed  Google Scholar 

  • Mattick KL, Jørgensen F, Legan JD et al (2000) Survival and filamentation of Salmonella enterica serovar Enteritidis pt4 and Salmonella enterica serovar Typhimurium dt104 at low water activity. Appl Environ Microbiol 66(4):1274–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellin JR, Cossart P (2012) The non-coding RNA world of the bacterial pathogen Listeria monocytogenes. RNA Biol 9(4):372–378

    Article  CAS  PubMed  Google Scholar 

  • Mihoub F, Mistou MY, Guillot A et al (2003) Cold adaptation of Escherichia coli: microbiological and proteomic approaches. Int J Food Microbiol 89(2–3):171–184

    Article  CAS  PubMed  Google Scholar 

  • Minami J, Katayama S, Matsushita O et al (1997) Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N- and C-terminal peptides. Microbiol Immunol 41:527–535

    Article  CAS  PubMed  Google Scholar 

  • Montanari C, Serrazanetti DI, Felis G et al (2015) New insights in thermal resistance of staphylococcal strains belonging to the species Staphylococcus epidermidis, Staphylococcus lugdunensis and Staphylococcus aureus. Food Control 50:605–612

    Article  CAS  Google Scholar 

  • Montet MP, Christieans S, Thevenot D et al (2009) Fate of acid-resistant and non-acid resistant Shiga toxin-producing Escherichia coli strains in experimentally contaminated French fermented raw meat sausages. Int J Food Microbiol 129(3):264–270

    Article  CAS  PubMed  Google Scholar 

  • Muchaamba F, Eshwar AK, Stevens MJA et al (2019) Variable carbon source utilization, stress resistance, and virulence profiles among Listeria monocytogenes strains responsible for listeriosis outbreaks in Switzerland. Front Microbiol 10:957

    Article  PubMed  PubMed Central  Google Scholar 

  • Mueller-Herbst S, Wustner S, Muhlig A et al (2014) Identification of genes essential for anaerobic growth of Listeria monocytogenes. Microbiology 160:752–765

    Article  CAS  Google Scholar 

  • Murray R (2005) Recognition and management of Staphylococcus aureus toxin-mediated disease. Intern Med J 35:S106–S119

    Article  PubMed  Google Scholar 

  • Müsken A, Bielaszewska M, Greune L et al (2008) Anaerobic conditions promote expression of Sfp fimbriae and adherence of sorbitol-fermenting enterohemorrhagic Escherichia coli O157:NM to human intestinal epithelial cells. Appl Environ Microbiol 74:1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Nachamkin IRVING, Yang XH, Stern NJ (1993) Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Appl Environ Microbiol 59(5):1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naughton LM, Blumerman SL, Carlberg M et al (2009) Osmoadaptation among Vibrio species and unique genomic features and physiological responses of Vibrio parahaemolyticus. Appl Environ Microbiol 75(9):2802–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro MA, McClane BA, Uzal FA (2018) Mechanisms of action and cell death associated with Clostridium perfringens toxins. Toxins 10(5):212

    Article  PubMed Central  CAS  Google Scholar 

  • Neal-McKinney J, Konkel M (2012) The Campylobacter jejuni CiaC virulence protein is secreted from the flagellum and delivered to the cytosol of host cells. Front Cell Infect Microbiol 2:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newell DG, Koopmans M, Verhoef L et al (2010) Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:S3–S15

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikolaus T, Deiwick J, Rappl C et al (2001) SseBCD proteins are secreted by the type III secretion system of Salmonella pathogenicity island 2 and function as a translocon. J Bacteriol 183(20):6036–6045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak JS, Tunick MH, Juneja VK (2001) Heat treatment adaptations in Clostridium perfringens vegetative cells. J Food Prot 64(10):1527–1534

    Article  CAS  PubMed  Google Scholar 

  • Oh E, Andrews KJ, McMullen LM et al (2019) Tolerance to stress conditions associated with food safety in Campylobacter jejuni strains isolated from retail raw chicken. Sci Rep UK 9(1):1–9

    Google Scholar 

  • Olesen I, Jespersen L (2010) Relative gene transcription and pathogenicity of enterohemorrhagic Escherichia coli after long-term adaptation to acid and salt stress. Int J Food Microbiol 141(3):248–253

    Article  CAS  PubMed  Google Scholar 

  • Oliver HF, Orsi RH, Wiedmann M et al (2013) σ(B) plays a limited role in the ability of Listeria monocytogenes strain F2365 to survive oxidative and acid stress and in its virulence characteristics. J Food Prot 76(12):2079–2086

    Article  CAS  PubMed  Google Scholar 

  • Ollinger J, Wiedmann M, Boor KJ (2008) σB-and PrfA-dependent transcription of genes previously classified as putative constituents of the Listeria monocytogenes PrfA regulon. Foodborne Pathog Dis 5(3):281–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orihuel A, Terán L, Renaut J et al (2019) Physiological and proteomic response of Escherichia coli O157: H7 to a bioprotective lactic acid bacterium in a meat environment. Food Res Int 125:108622

    Article  CAS  PubMed  Google Scholar 

  • Pereira BMP, Wang X, Tagkopoulos I (2020) Short-and long-term transcriptomic responses of Escherichia coli to biocides: a systems analysis. Appl Environ Microbiol 86(14):e00708–e00720

    CAS  Google Scholar 

  • Perez KJ, Ceccon RV, Malheiros PS et al (2010) Influence of acid adaptation on the survival of Salmonella Enteritidis and Salmonella Typhimurium in simulated gastric fluid and in Rattus norvegicus intestine infection. J Food Saf 30:398–414

    Article  CAS  Google Scholar 

  • Petit L, Gibert M, Popoff MR (1999) Clostridium perfringens: toxinotype and genotype. Trends Microbiol 7(3):104–110

    Google Scholar 

  • PHAC (2021) Surveillance of Clostridium perfringens infection. https://www.canada.ca/en/publichealth/services/diseases/clostridium-perfringens/surveillance.html#number-of-cases-of-clostridium-perfringens-infection-incanada. Accessed 08 Mar 2021

  • Pickett CL, Whitehouse CA (1999) The cytolethal distending toxin family. Trends Microbiol 7(7):292–297

    Article  CAS  PubMed  Google Scholar 

  • Pinner RW, Schuchatn A, Swaminathan B et al (1992) Role of foods in sporadic Listeriosis: II. Microbilogic and epidemiologic investigation. JAMA 267(15):2046–2050

    Article  CAS  PubMed  Google Scholar 

  • Pöntinen A, Aalto-Araneda M, Lindström M, Korkeala H (2017a) Heat resistance mediated by pLM58 plasmid-borne ClpL in Listeria monocytogenes. mSphere 2(6):e00364–e00317

    Article  PubMed  PubMed Central  Google Scholar 

  • Pöntinen A, Lindström M, Skurnik M, Korkeala H (2017b) Screening of the two-component-system histidine kinases of Listeria monocytogenes EGD-e. LiaS is needed for growth under heat, acid, alkali, osmotic, ethanol and oxidative stresses. Food Microbiol 65:36–43

    Article  PubMed  CAS  Google Scholar 

  • Qiao J, Zhu M, Lu Z et al (2020) The antibiotics resistance mechanism and pathogenicity of cold stressed Staphylococcus aureus. LWT 126:109274

    Article  CAS  Google Scholar 

  • Radoshevich L, Cossart P (2018) Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 16(1):32–46

    Google Scholar 

  • Raju D, Setlow P, Sarker MR (2007) Antisense-RNA-mediated decreased synthesis of small, acid-soluble spore proteins leads to decreased resistance of Clostridium perfringens spores to moist heat and UV radiation. Appl Environ Microbiol 73(7):2048–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid AN, Pandey R, Palyada K et al (2008) Identification of Campylobacter jejuni genes involved in the response to acidic pH and stomach transit. Appl Environ Microbiol 74(5):1583–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Wang X, Wu X, Wang R (2019) Epidemiological characteristics of food poisoning in China, July-September, 2018. Disease Surveillance 34(8):741–745

    Google Scholar 

  • Ricke SC, Dawoud TM, Kim SA et al (2018) Salmonella cold stress response: mechanisms and occurrence in foods. Adv Appl Microbiol 104:1–38

    Google Scholar 

  • Ringus DL, Ivy RA, Wiedmann M et al (2012) Salt stress-induced transcription of σB-and CtsR-regulated genes in persistent and non-persistent Listeria monocytogenes strains from food processing plants. Foodborne Pathog Dis 9(3):198–206

    Article  CAS  PubMed  Google Scholar 

  • Sánchez B, Cabo ML, Margolles A et al (2010) A proteomic approach to cold acclimation of Staphylococcus aureus CECT 976 grown at room and human body temperatures. Int J Food Microbiol 144(1):160–168

    Article  PubMed  Google Scholar 

  • Savva CG, Clark AR, Naylor CE et al (2019) The pore structure of Clostridium perfringens epsilon toxin. Nat Commun 10(1):1–10

    Article  CAS  Google Scholar 

  • Sawires YS, Songer JG (2006) Clostridium perfringens: insight into virulence evolution and population structure. Anaerobe 12(1):23–43

    Google Scholar 

  • Scallan E, Hoekstra RM, Angulo FJ et al (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnupf P, Portnoy DA (2007) Listeriolysin O: a phagosome-specific lysin. Microbes Infect 9(10):1176–1187

    Article  CAS  PubMed  Google Scholar 

  • Schuppler M (2014) How the interaction of Listeria monocytogenes and Acanthamoeba spp. affects growth and distribution of the food borne pathogen. Appl Microbiol Biotechnol 98(7):2907–2916

    Article  CAS  PubMed  Google Scholar 

  • Schuster CF, Wiedemann DM, Kirsebom FC et al (2020) High-throughput transposon sequencing highlights the cell wall as an important barrier for osmotic stress in methicillin resistant Staphylococcus aureus and underlines a tailored response to different osmotic stressors. Mol Microbiol 113(4):699–717

    Article  CAS  PubMed  Google Scholar 

  • Seo SW, Kim D, O’Brien EJ et al (2015) Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli. Nat Commun 6:7970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sergelidis D, Abrahim A (2009) Adaptive response of Listeria monocytogenes to heat and its impact on food safety. Food Control 20(1):1–10

    Article  CAS  Google Scholar 

  • Shah J, Desai PT, Chen D et al (2013) Preadaptation to cold stress in Salmonella enterica serovar Typhimurium increases survival during subsequent acid stress exposure. Appl Environ Microbiol 79(23):7281–7289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen HW, Yu RC, Chou CC (2007) Acid adaptation affects the viability of Salmonella Typhimurium during the lactic fermentation of skim milk and product storage. Int J Food Microbiol 114(3):380–385

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Geornaras I, Belk KE et al (2011) Thermal inactivation of acid, cold, heat, starvation, and desiccation stress-adapted Escherichia coli O157:H7 in moisture-enhanced nonintact beef. J Food Prot 74(4):531–538

    Article  PubMed  Google Scholar 

  • Shrihari RY, Singh NP (2012) Multiplex reverse transcription polymerase chain reaction to study the expression of virulence and stress response genes in Staphylococcus aureus. J Food Sci 77(2):M95–M101

    Article  CAS  PubMed  Google Scholar 

  • Slanec T, Schmidt H (2011) Specific expression of adherence-related genes in Escherichia coli O157:H7 strain EDL933 after heat treatment in ground beef. J Food Prot 74(9):1434–1440

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Wouters J, Gahan CGM et al (2001) Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl Environ Microbiol 67:2692–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Songer JG (1996) Clostridial enteric diseases of domestic animals. Clin Microbiol Rev 9(2):216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soufi L, Abbassi MS, Sáenz Y et al (2009) Prevalence and diversity of integrons and associated resistance genes in Escherichia coli isolates from poultry meat in Tunisia. Foodborne Pathog Dis 6(9):1067–1073

    Article  CAS  PubMed  Google Scholar 

  • Spaulding AR, Salgado-Pabón W, Kohler PL et al (2013) Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 26(3):422–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spector MP, Kenyon WJ (2012) Resistance and survival strategies of Salmonella enterica to environmental stresses. Food Res Int 45(2):455–481

    Article  CAS  Google Scholar 

  • Su YC, Liu C (2007) Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24(6):549–558

    Google Scholar 

  • Sun Y, Reid B, Ferreira F et al (2019) Infection-generated electric field in gut epithelium drives bidirectional migration of macrophages. PLoS Biol 17(4):e3000044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan B, Gerner-Smidt P (2007) The epidemiology of human listeriosis. Microbes Infect 9(10):1236–1243

    Article  PubMed  Google Scholar 

  • Tack DM, Ray L, Griffin PM et al (2020) Preliminary incidence and trends of infections with pathogens transmitted commonly through food-foodborne diseases active surveillance network, 10 US sites, 2016–2019. MMWR Morbid Mortal Wkly Rep 69(17):509

    Article  Google Scholar 

  • Tang J, Jia J, Chen Y et al (2018) Proteomic analysis of Vibrio parahaemolyticus under cold stress. Curr Microbiol 75(1):20–26

    Article  CAS  PubMed  Google Scholar 

  • Tsai YW, Ingham SC (1997) Survival of Escherichia coli O157:H7 and Salmonella spp. in acidic condiments. J Food Prot 60:751–755

    Article  CAS  PubMed  Google Scholar 

  • Urmersbach S, Aho T, Alter T et al (2015) Changes in global gene expression of Vibrio parahaemolyticus induced by cold-and heat-stress. BMC Microbiol 15(1):1–13

    Article  CAS  Google Scholar 

  • Verbrugghe E, Van Parys A, Leyman B et al (2015) Heat-labile enterotoxin of Escherichia coli promotes intestinal colonization of Salmonella enterica. Comp Immunol Microbiol Infect Dis 43:1–7

    Article  PubMed  Google Scholar 

  • Vidovic S, Mangalappalli-Illathu AK, Korber DR (2011) Prolonged cold stress response of Escherichia coli O157 and the role of rpoS. Int J Food Microbiol 146(2):163–169

    Article  CAS  PubMed  Google Scholar 

  • Vidovic S, Mangalappalli-Illathu AK, Xiong H et al (2012) Heat acclimation and the role of RpoS in prolonged heat shock of Escherichia coli O157. Food Microbiol 30(2):457–464

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang X, Yu L et al (2020) Resistance of biofilm formation and formed-biofilm of Escherichia coli O157: H7 exposed to acid stress. LWT 118:108787

    Article  CAS  Google Scholar 

  • Wattinger L, Stephan R, Layer F et al (2012) Comparison of Staphylococcus aureus isolates associated with food intoxication with isolates from human nasal carriers and human infections. Eur J Clin Microbiol 31(4):455–464

    Article  CAS  Google Scholar 

  • Whiteley AT, Ruhland BR, Edrozo MB et al (2017) A redoxresponsive transcription factor is critical for pathogenesis and aerobic growth of Listeria monocytogenes. Infect Immun 85:e00978–e00916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiseman GM (1975) The hemolysins of Staphylococcus aureus. Bacteriol Rev 39(4):317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong H, Peng PY, Han JM et al (1998) Effect of mild acid treatment on the survival, enteropathogenicity, and protein production in Vibrio parahaemolyticus. Infect Immun 66(7):3066–3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong HC, Liao R, Hsu P et al (2018) Molecular response of Vibrio parahaemolyticus to the sanitizer peracetic acid. Int J Food Microbiol 286:139–147

    Article  CAS  PubMed  Google Scholar 

  • Wood A, Irving SE, Bennison DJ et al (2019) The (p) ppGpp-binding GTPase era promotes rRNA processing and cold adaptation in Staphylococcus aureus. PLoS Genet 15(8):e1008346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2015) WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007–2015

    Google Scholar 

  • Wu YL, Lee LH, Rollins DM et al (1994) Heat shock- and alkaline pH-induced proteins of Campylobacter jejuni: characterization and immunological properties. Infect Immun 62(10):4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Yu PL, Flint S (2017) Persister cell formation of Listeria monocytogenes in response to natural antimicrobial agent nisin. Food Control 77:243–250

    Article  CAS  Google Scholar 

  • Xu J, Li T, Gao Y et al (2019) MgrB affects the acid stress response of Escherichia coli by modulating the expression of iraM. FEMS Microbiol Lett 366(11):fnz123

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhao Z, Tong WH et al (2020) An acid-tolerance response system protecting exponentially growing Escherichia coli. Nat Commun 11(1):1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaashikaa P, Saravanan A, Kumar PS (2016) Isolation and identification of Vibrio cholerae and Vibrio parahaemolyticus from prawn (Penaeus monodon) seafood: preservation strategies. Microb Pathogenesis 99:5–13

    Article  CAS  Google Scholar 

  • Yang J, Tang CB, Xiao J et al (2018) Influences of epigallocatechin gallate and citric acid on Escherichia coli O157:H7 toxin gene expression and virulence-associated stress response. Lett Appl Microbiol 67(5):435–441

    Article  CAS  PubMed  Google Scholar 

  • Yeung PS, Boor KJ (2004) Effects of acid stress on Vibrio parahaemolyticus survival and cytotoxicity. J Food Prot 67(7):1328

    Article  PubMed  Google Scholar 

  • Zarzecka U, Grinzato A, Kandiah E et al (2020) Functional analysis and cryo-electronmicroscopy of Campylobacter jejuni serine protease HtrA. Gut Microbes 12(1):1810532

    Article  PubMed Central  CAS  Google Scholar 

  • Zhou C, Fey PD (2020) The acid response network of Staphylococcus aureus. Curr Opin Microbiol 55:67–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorraquino V, Kim M, Rai N et al (2017) The genetic and transcriptional basis of short and long term adaptation across multiple stresses in Escherichia coli. Mol Biol Evol 34(3):707–717

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, T., Liao, X., Feng, J. (2022). The Importance of Understanding the Stress Response in Foodborne Pathogens Along the Food Production Chain. In: Ding, T., Liao, X., Feng, J. (eds) Stress Responses of Foodborne Pathogens. Springer, Cham. https://doi.org/10.1007/978-3-030-90578-1_1

Download citation

Publish with us

Policies and ethics