Skip to main content

The Significance of Coordinated Research Against SARS-CoV-2

  • Conference paper
  • First Online:
Advances in Manufacturing Processes, Intelligent Methods and Systems in Production Engineering (GCMM 2021)

Abstract

With many unanswered questions about SARS-CoV-2, the research community needs to immediately prioritize research areas in the fight against the current COVID-19 pandemic. An accelerated and coordinated multidisciplinary research effort is needed from the wider scientific community in many sectors from vaccine and antiviral development to digital technology. This mini-review highlights key research opportunities such as vaccine development, diagnostics, antiviral masks, environmental transmission and antiviral treatments, and outlines how systematic efforts can be focused in these key areas. Some alternate strategies such as the use of novel nanostructured surfaces to slow and prevent the spread of COVID-19 are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, P., et al.: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798), 270–273 (2020)

    Article  Google Scholar 

  2. Corman, V.M., et al.: Hosts and sources of endemic human coronaviruses. In: Advances in Virus Research, pp. 163–188. Elsevier (2018)

    Google Scholar 

  3. Lipsitch, M., Swerdlow, D.L., Finelli, L.: Defining the epidemiology of Covid-19 — studies needed. N. Engl. J. Med. 382(13), 1194–1196 (2020)

    Article  Google Scholar 

  4. Fauci, A.S., Lane, H.C., Redfield, R.R.: Covid-19—navigating the uncharted. N. Engl. J. Med. 382(13), 1268–1269 (2020)

    Article  Google Scholar 

  5. Roser, M., et al.: To understand the global pandemic, we need global testing – the Our World in Data COVID-19 Testing dataset. OurWorldInData.org (2020). https://ourworldindata.org/coronavirus

  6. Udugama, B., et al.: Diagnosing COVID-19: the disease and tools for detection. ACS Nano 14(4), 3822–3835 (2020)

    Article  Google Scholar 

  7. Chan, K.H., et al.: Detection of SARS coronavirus in patients with suspected SARS. Emerg. Infect. Dis. 10(2), 294 (2004)

    Article  Google Scholar 

  8. Seto, W., et al.: Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet 361(9368), 1519–1520 (2003)

    Article  Google Scholar 

  9. Otter, J., et al.: Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J. Hosp. Infect. 92(3), 235–250 (2016)

    Article  Google Scholar 

  10. Poutanen, S.M., et al.: Identification of severe acute respiratory syndrome in Canada. N. Engl. J. Med. 348(20), 1995–2005 (2003)

    Article  Google Scholar 

  11. Ong, S.W.X., et al.: Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 323, 1610–1612 (2020)

    Article  Google Scholar 

  12. Yeo, C., Kaushal, S., Yeo, D.: Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol. Hepatol. 5(4), 335–337 (2020)

    Article  Google Scholar 

  13. Ng, L.F., et al.: Detection of severe acute respiratory syndrome coronavirus in blood of infected patients. J. Clin. Microbiol. 42(1), 347–350 (2004)

    Article  Google Scholar 

  14. To, K.K.-W., et al.: Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet. Infect. Diseases 25, 565–574 (2020)

    Article  Google Scholar 

  15. Wang, W., et al.: Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 323, 1843–1844 (2020)

    Google Scholar 

  16. Gu, J., Han, B., Wang, J.: COVID-19: gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology 58, 1518–1519 (2020)

    Article  Google Scholar 

  17. Xiao, F., et al.: Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 158, 1831–1833 (2020)

    Article  Google Scholar 

  18. Pan, Y., et al.: Viral load of SARS-CoV-2 in clinical samples. Lancet. Infect. Dis 20(4), 411–412 (2020)

    Article  Google Scholar 

  19. Corman, V.M., et al.: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 25(3), 2000045 (2020)

    Article  Google Scholar 

  20. Wang, C., et al.: The establishment of reference sequence for SARS-CoV-2 and variation analysis. J. Med. Virol. 92, 667–674 (2020)

    Article  Google Scholar 

  21. Zhang, N., et al.: Recent advances in the detection of respiratory virus infection in humans. J. Med. Virol. 92(4), 408–417 (2020)

    Article  Google Scholar 

  22. Cordes, A.K., Heim, A.: Rapid random access detection of the novel SARS-coronavirus-2 (SARS-CoV-2, previously 2019-nCoV) using an open access protocol for the Panther fusion. J. Clin. Virol. 125, 1043405 (2020)

    Article  Google Scholar 

  23. Lee, E.Y., Ng, M.-Y., Khong, P.-L.: COVID-19 pneumonia: what has CT taught us? Lancet. Infect. Dis 20(4), 384–385 (2020)

    Article  Google Scholar 

  24. Ai, T., et al.: Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 296, 200642 (2020)

    Article  Google Scholar 

  25. Patel, R., et al.: Report from the American society for microbiology COVID-19 international summit, 23 March 2020: value of diagnostic testing for SARS-CoV-2/COVID-19. mBio. 11(2), e00722–20 (2020)

    Google Scholar 

  26. Zou, L., et al.: SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 382(12), 1177–1179 (2020)

    Article  Google Scholar 

  27. Sugiyama, H., et al.: Comparison of loop-mediated isothermal amplification, real-time PCR, and virus isolation for the detection of herpes simplex virus in genital lesions. J. Med. Virol. 75(4), 583–587 (2005)

    Article  Google Scholar 

  28. Khan, M., et al.: Comparative evaluation of the LAMP assay and PCR-based assays for the rapid detection of Alternaria solani. Front. Microbiol. 9, 2089 (2018)

    Article  Google Scholar 

  29. Lau, S.K.P., et al.: SARS coronavirus detection methods. Emerg. Infect. Dis. 11(7), 1108–1111 (2005)

    Article  Google Scholar 

  30. Chan, J.F.-W., et al.: Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. J. Clin. Microbiol. 58(5), e00310-e320 (2020)

    Article  Google Scholar 

  31. Freije, C.A., et al.: Programmable inhibition and detection of RNA viruses using Cas13. Mol. Cell 76(5), 826-837.e11 (2019)

    Article  Google Scholar 

  32. Shen, M., et al.: Recent advances and perspectives of nucleic acid detection for coronavirus. J. Pharmaceut. Anal. 10, 97–101 (2020)

    Google Scholar 

  33. Gootenberg, J.S., et al.: Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360(6387), 439 (2018)

    Article  Google Scholar 

  34. Gootenberg, J.S., et al.: Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356(6336), 438 (2017)

    Article  Google Scholar 

  35. Meyer, B., Drosten, C., Müller, M.A.: Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res. 194, 175–183 (2014)

    Article  Google Scholar 

  36. Bai, S.L., et al.: Analysis of the first cluster of cases in a family of novel coronavirus pneumonia in Gansu province. Zhonghua Yu Fang Yi Xue Za Zhi 54, E005 (2020)

    Google Scholar 

  37. Xiao, S.-Y., Wu, Y., Liu, H.: Evolving status of the 2019 novel coronavirus infection: proposal of conventional serologic assays for disease diagnosis and infection monitoring. J. Med. Virol. 92(5), 464–467 (2020)

    Article  Google Scholar 

  38. Wilder-Smith, A., et al.: Asymptomatic SARS coronavirus infection among healthcare workers. Singapore. Emerg. Infect. Diseases 11(7), 1142–1145 (2005)

    Article  Google Scholar 

  39. Haveri, A., et al.: Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. Eurosurveillance 25(11), 2000266 (2020)

    Article  Google Scholar 

  40. Ventures, A.: Fight the pandemic (2020). https://www.av.co/covid

  41. Chan, J.F.-W., et al.: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10223), 514–523 (2020)

    Article  Google Scholar 

  42. Li, G., De Clercq, E.: Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Drug. Rev. Disc. 19, 149-150 (2020). (Nature Publishing Group)

    Google Scholar 

  43. Dong, L., Hu, S., Gao, J.: Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Disc. Ther. 14(1), 58–60 (2020)

    Article  Google Scholar 

  44. Hodgson, J.: The pandemic pipeline. Nat. Biotechnol. 38, 523–532 (2020)

    Article  Google Scholar 

  45. Hu, T.Y., Frieman, M., Wolfram, J.: Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat. Nanotechnol. 15, 247–249 (2020)

    Article  Google Scholar 

  46. Caly, L., et al.: The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral. Res. 178, 104787 (2020)

    Article  Google Scholar 

  47. Wang, M., et al.: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30(3), 269–271 (2020)

    Article  Google Scholar 

  48. Grein, J., et al.: Compassionate use of remdesivir for patients with severe Covid-19. New England J. Med. 382, 2327–2330 (2020)

    Article  Google Scholar 

  49. Pandemic, C.: Hopes dashed as coronavirus drug remdesivir ‘fails first trial’. In: BBC (2020)

    Google Scholar 

  50. Carter, D.C., et al.: A unique protein self-assembling nanoparticle with significant advantages in vaccine development and production. J. Nanomater. 2020, 1–10 (2020)

    Article  Google Scholar 

  51. Choy, K.-T., et al.: Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral. Res. 178, 104786 (2020)

    Article  Google Scholar 

  52. Elfiky, A.A.: Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life. Sci. 248, 117477 (2020)

    Article  Google Scholar 

  53. Monteil, V., et al.: Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 181, 905–913 (2020)

    Article  Google Scholar 

  54. Dai, W., et al.: Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 368, eabb4489 (2020)

    Google Scholar 

  55. Zhang, L., et al.: Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368(6489), 409–412 (2020)

    Article  Google Scholar 

  56. Jin, Z., et al.: Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature. 582, 289–293 (2020)

    Article  Google Scholar 

  57. Shen, C., et al.: Treatment of 5 critically Ill patients with COVID-19 With convalescent plasma. JAMA. 323, 1582–1589 (2020)

    Article  Google Scholar 

  58. Roback, J.D., Guarner, J.: Convalescent plasma to treat COVID-19: possibilities and challenges. JAMA. 323, 1561–1562 (2020)

    Article  Google Scholar 

  59. Chen, L., et al.: Convalescent plasma as a potential therapy for COVID-19. Lancet. Infect. Dis 20(4), 398–400 (2020)

    Article  Google Scholar 

  60. Casadevall, A., Pirofski, L.-A.: The convalescent sera option for containing COVID-19. J. Clin. Investig. 130(4), 1545–1548 (2020)

    Article  Google Scholar 

  61. Biot, C., et al.: Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J. Med. Chem. 49(9), 2845–2849 (2006)

    Article  Google Scholar 

  62. Yao, X., et al.: In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Diseases 71, 732–739 (2020)

    Article  Google Scholar 

  63. Bosseboeuf, E., et al.: Azithromycin inhibits the replication of Zika virus. J. Antivir. Antiretrovir 10, 6–11 (2018)

    Article  Google Scholar 

  64. Bacharier, L.B., et al.: Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: a randomized clinical trial. JAMA 314(19), 2034–2044 (2015)

    Article  Google Scholar 

  65. Gautret, P., et al.: Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents. 56, 105949 (2020)

    Article  Google Scholar 

  66. Gautret, P., et al.: Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study. Travel. Med. Infect. Disease. 34, 101663 (2020)

    Article  Google Scholar 

  67. Wrapp, D., et al.: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483), 1260 (2020)

    Article  Google Scholar 

  68. Zhang, J., et al.: Progress and prospects on vaccine development against SARS-CoV-2. Vaccines 8(2), 153 (2020)

    Article  Google Scholar 

  69. Takashima, Y., et al.: Artificial molecular clamp: a novel device for synthetic polymerases. Angew. Chem. Int. Ed. 50(33), 7524–7528 (2011)

    Article  Google Scholar 

  70. Organization, W.H.: Bacille Calmette-Guérin (BCG) vaccination and COVID-19: scientific brief, 12 April 2020. World Health Organization (2020)

    Google Scholar 

  71. Office, U.O.O.N: Oxford COVID-19 vaccine begins human trial stage (2020). http://www.ox.ac.uk/news/2020-04-23-oxford-covid-19-vaccine-begins-human-trial-stage

  72. Lurie, N., et al.: Developing Covid-19 vaccines at pandemic speed. New. England. J. Med. 382, 1969–1973 (2020)

    Article  Google Scholar 

  73. Peeples, L.: News feature: avoiding pitfalls in the pursuit of a COVID-19 vaccine. Proc. Nat. Acad. Sci. 117, 202005456 (2020)

    Google Scholar 

  74. Maslow, J.N.: Vaccine development for emerging virulent infectious diseases. Vaccine 35(41), 5437–5443 (2017)

    Article  Google Scholar 

  75. Modjarrad, K.: MERS-CoV vaccine candidates in development: the current landscape. Vaccine 34(26), 2982–2987 (2016)

    Article  Google Scholar 

  76. Coleman, C.M., et al.: Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine 32(26), 3169–3174 (2014)

    Article  Google Scholar 

  77. van Doremalen, N., et al.: Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England J. Med. 382, 1564–1567 (2020)

    Article  Google Scholar 

  78. Kampf, G.: Potential role of inanimate surfaces for the spread of coronaviruses and their inactivation with disinfectant agents. Infect. Prevent. Pract. 2(2), 100044 (2020)

    Article  Google Scholar 

  79. Ivanova, E.P., et al.: Natural bactericidal surfaces: mechanical rupture of pseudomonas aeruginosa cells by cicada wings. Small 8(16), 2489–2494 (2012)

    Article  Google Scholar 

  80. Ivanova, E.P., et al.: Bactericidal activity of black silicon. Nat. Commun. 4, 1–7 (2013)

    Article  Google Scholar 

  81. Jaggessar, A., et al.: Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 15(1), 64 (2017)

    Article  Google Scholar 

  82. Shahali, H., et al.: Multi-biofunctional properties of three species of cicada wings and biomimetic fabrication of nanopatterned titanium pillars. J. Mater. Chem. B. 7, 1300–1310 (2019)

    Article  Google Scholar 

  83. Hasan, J., et al.: Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria. Mater. Des. 140, 332–344 (2018)

    Article  Google Scholar 

  84. Hasan, J., et al.: Antiviral and antibacterial nanostructured surfaces with excellent mechanical properties for hospital applications. ACS Biomater. Sci. Eng. 6, 3608–3618 (2020)

    Article  Google Scholar 

  85. Sakudo, A., Yagyu, Y., Onodera, T.: Disinfection and sterilization using plasma technology: fundamentals and future perspectives for biological applications. Int. J. Mol. Sci. 20(20), 5216 (2019)

    Article  Google Scholar 

  86. Sakudo, A., et al.: N2 gas plasma inactivates influenza virus by inducing changes in viral surface morphology, protein, and genomic RNA. BioMed. Res. Int. 2013, 694269 (2013)

    Article  Google Scholar 

  87. Yamashiro, R., Misawa, T., Sakudo, A.: Key role of singlet oxygen and peroxynitrite in viral RNA damage during virucidal effect of plasma torch on feline calicivirus. Sci. Rep. 8(1), 17947 (2018)

    Article  Google Scholar 

  88. Branley, J.M.: Can we reuse P2/N95 respirators? Current evidence and urgent research questions. University of Sydney, Sydney (2020)

    Google Scholar 

  89. Kern, J.J., Stein, R.L., Wildrick, J.P.: Disposable face mask. Google Patents (1997)

    Google Scholar 

  90. Zambrano-Monserrate, M.A., Ruano, M.A., Sanchez-Alcalde, L.: Indirect effects of COVID-19 on the environment. Sci. Total. Environ. 728, 138813 (2020)

    Article  Google Scholar 

  91. Muhammad, S., Long, X., Salman, M.: COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 728, 138820 (2020)

    Article  Google Scholar 

  92. Ting, D.S.W., et al.: Digital technology and COVID-19. Nat. Med. 25, 459–461 (2020)

    Article  Google Scholar 

  93. Keesara, S., Jonas, A., Schulman, K.: Covid-19 and health care’s digital revolution. New England J. Med. 382, e82 (2020)

    Article  Google Scholar 

  94. Reeves, J.J., et al.: Rapid response to COVID-19: health informatics support for outbreak management in an academic health system. J. Am. Med. Inform. Assoc. 27, 853–859 (2020)

    Article  Google Scholar 

  95. Calvo, R.A., Deterding, S., Ryan, R.M.: Health surveillance during covid-19 pandemic. Br. Med. J. 369, 1–10 (2020)

    Google Scholar 

  96. Ferretti, L., et al.: Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science. 368, eabb6936 (2020)

    Article  Google Scholar 

  97. Oliver, N., et al.: Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Sci. Adv. 6, eabc0764 (2020)

    Article  Google Scholar 

  98. Organization, W.H: Laboratory biosafety guidance related to coronavirus disease 2019 (COVID-19): interim guidance, 12 February 2020. World Health Organization (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad K. D. V. Yarlagadda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hasan, J. et al. (2022). The Significance of Coordinated Research Against SARS-CoV-2. In: Batako, A., Burduk, A., Karyono, K., Chen, X., Wyczółkowski, R. (eds) Advances in Manufacturing Processes, Intelligent Methods and Systems in Production Engineering. GCMM 2021. Lecture Notes in Networks and Systems, vol 335. Springer, Cham. https://doi.org/10.1007/978-3-030-90532-3_53

Download citation

Publish with us

Policies and ethics