Skip to main content

Pollution and Wildlife Health

  • Chapter
  • First Online:
Wildlife Population Health
  • 556 Accesses

Abstract

Pollution is a pervasive and growing threat to wildlife health. This chapter discusses two broad groups of pollution, those whose abatement could have immediate beneficial effects including light, air, and noise pollution, and those that will take relatively longer to address due to their environmental persistence or their continuing discharge. Whilst we are very good at detecting the presence of pollutants in tissues or the environment, making a convincing link between the presence of these compounds and mortality events in the field or population effects will remain a challenge for the foreseeable future. Creative new approaches are also being considered to mitigate the effects of pollution on wildlife and ecosystems. Depending on the source of pollution, the beneficial outcomes of mitigation measures, if properly implemented, could have immediate effects. Given the plethora of potential adverse pollution effects, frameworks to prioritize which threats are most likely to cause adverse effects and develop means to address or manage them are an imperative. In the interim, focusing on preserving existing habitats and reducing our footprint by adjusting human activities to minimize the release of pollutants into the environment will go a long way toward promoting healthy wildlife and ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  • Anderson HR (2009) Air pollution and mortality: a history. Atmos Environ 43(1):142–152

    Article  CAS  Google Scholar 

  • Arnold KE, Boxall AB, Brown AR, Cuthbert RJ, Gaw S, Hutchinson TH, Jobling S, Madden JC, Metcalfe CD, Naidoo V, Shore RF (2013) Assessing the exposure risk and impacts of pharmaceuticals in the environment on individuals and ecosystems. Biol Lett 9:20130492

    Article  PubMed  PubMed Central  Google Scholar 

  • Barber JR, Crooks KR, Fristrup KM (2010) The costs of chronic noise exposure for terrestrial organisms. Trends Ecol Evol 25(3):180–189

    Article  PubMed  Google Scholar 

  • Basti L, Hégaret H, Shumway SE (2018) Harmful algal blooms and shellfish. In: Harmful algal blooms: a compendium desk reference, vol 2. John Wiley & Sons, Hoboken, pp 135–190

    Chapter  Google Scholar 

  • Bednarek A, Szklarek S, Zalewski M (2014) Nitrogen pollution removal from areas of intensive farming—comparison of various denitrification biotechnologies. Ecohydrology & Hydrobiology 14(2):132–141

    Article  Google Scholar 

  • Blettler MC, Wantzen KM (2019) Threats underestimated in freshwater plastic pollution: mini-review. Water Air Soil Pollut 230(7):1–1

    Article  CAS  Google Scholar 

  • Blus LJ, Henny CJ, Mulhern BM (1987) Concentrations of metals in mink and other mammals from Washington and Idaho. Environ Pollut 44(4):307–318

    Article  CAS  PubMed  Google Scholar 

  • Bongaarts J (2009) Human population growth and the demographic transition. Philos Trans Royal Soc 364(1532):2985–2990

    Article  Google Scholar 

  • Broadwater MH, Van Dolah FM, Fire SE (2018) Vulnerabilities of marine mammals to harmful algal blooms. Harmful Algal Blooms 2(8):191–222

    Article  Google Scholar 

  • Bucci K, Tulio M, Rochman CM (2020) What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol Appl 30(2):e02044

    Article  CAS  PubMed  Google Scholar 

  • Burkholder, J.M., Shumway, S.E., and Glibert, P.M. 2018. Food web and ecosystem impacts of harmful algae, S.E. Shumway, J.M. Burkholder, S.L. Morton, Harmful algal blooms: a compendium desk reference, John Wiley, Hoboken pp. 243–301

    Chapter  Google Scholar 

  • Coates PA (2005) The strange stillness of the past: toward an environmental history of sound and noise. Environ Hist 10(4):636–665

    Article  Google Scholar 

  • Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. Lancet 389(10082):1907–1918

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook LM (2003) The rise and fall of the carbonaria form of the peppered moth. Q Rev Biol 78(4):399–417

    Article  PubMed  Google Scholar 

  • Cooper TF, Gilmour JP, Fabricius KE (2009) Bioindicators of changes in water quality on coral reefs: review and recommendations for monitoring programmes. Coral Reefs 28(3):589–606

    Article  Google Scholar 

  • Crowley TJ, Berner RA (2001) CO2 and climate change. Science 292(5518):870–872

    Article  CAS  PubMed  Google Scholar 

  • Csavina J, Field J, Taylor MP, Gao S, Landázuri A, Betterton EA, Sáez AE (2012) A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci Total Environ 433:58–73

    Article  CAS  PubMed  Google Scholar 

  • Duarte CM, Chapuis L, Collin SP, Costa DP, Devassy RP, Eguiluz VM, Erbe C, Gordon TA, Halpern BS, Harding HR, Havlik MN (2021) The soundscape of the Anthropocene Ocean. Science 371:6529

    Article  CAS  Google Scholar 

  • Eng ML, Stutchbury BJ, Morrissey CA (2019) A neonicotinoid insecticide reduces fueling and delays migration in songbirds. Science 365(6458):1177–1180

    Article  CAS  PubMed  Google Scholar 

  • Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187(4):1–21

    Article  CAS  Google Scholar 

  • Gall SC, Thompson RC (2015) The impact of debris on marine life. Mar Pollut Bull 92(1–2):170–179

    Article  CAS  PubMed  Google Scholar 

  • Gallaway T, Olsen RN, Mitchell DM (2010) The economics of global light pollution. Ecol Econ 69(3):658–665

    Article  Google Scholar 

  • Gaston KJ (2019) Nighttime ecology: the “nocturnal problem” revisited. Am Nat 193(4):481–502

    Article  PubMed  Google Scholar 

  • Gaston KJ, Davies TW, Bennie J, Hopkins J (2012) Reducing the ecological consequences of night-time light pollution: options and developments. J Appl Ecol 49(6):1256–1266

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaw S, Thomas KV, Hutchinson TH (2014) Sources, impacts and trends of pharmaceuticals in the marine and coastal environment. Philos Trans Royal Soc 369(1656):20130572

    Article  Google Scholar 

  • Gewert B, Plassmann MM, MacLeod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci: Processes Impacts 17(9):1513–1521

    CAS  Google Scholar 

  • Ghaly AE, Ramakrishnan VV (2015) Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: a critical review. J Pollut Effects Contr 27:1–26

    Google Scholar 

  • Gibble CM, Hoover BA (2018) Interactions between seabirds and harmful algal blooms. Harmful Algal Blooms 2:223–242

    Article  Google Scholar 

  • Gibbons D, Morrissey C, Mineau P (2015) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res 22(1):103–118

    Article  CAS  Google Scholar 

  • Glibert PM, Burkholder JM (2018) Causes of harmful algal blooms. Harmful Algal Blooms 2:1–38

    Google Scholar 

  • Greaver TL, Sullivan TJ, Herrick JD, Barber MC, Baron JS, Cosby BJ, Deerhake ME, Dennis RL, Dubois JJ, Goodale CL, Herlihy AT (2012) Ecological effects of nitrogen and sulfur air pollution in the US: what do we know? Front Ecol Environ 10(7):365–372

    Article  Google Scholar 

  • Hale RC, Seeley ME, La Guardia MJ, Mai L, Zeng EY (2020) A global perspective on microplastics. J Geophys Res Oceans 125(1):e2018JC014719

    Article  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, Dortch Q, Gobler CJ, Heil CA, Humphries E, Lewitus A (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8(1):3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández DL, Vallano DM, Zavaleta ES, Tzankova Z, Pasari JR, Weiss S, Selmants PC, Morozumi C (2016) Nitrogen pollution is linked to US listed species declines. Bioscience 66(3):213–222

    Article  Google Scholar 

  • Hernberg S (2000) Lead poisoning in a historical perspective. Am J Ind Med 38(3):244–254

    Article  CAS  PubMed  Google Scholar 

  • Horváth G, Kriska G, Malik P, Robertson B (2009) Polarized light pollution: a new kind of ecological photopollution. Front Ecol Environ 7(6):317–325

    Article  Google Scholar 

  • Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8(1):14–20

    Article  CAS  Google Scholar 

  • Hughes SR, Kay P, Brown LE (2013) Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ Sci Technol 47(2):661–677

    Article  CAS  PubMed  Google Scholar 

  • Jepsen EM, de Bruyn PN (2019) Pinniped entanglement in oceanic plastic pollution: a global review. Mar Pollut Bull 145:295–305

    Article  CAS  PubMed  Google Scholar 

  • Jobling S, Williams R, Johnson A, Taylor A, Gross-Sorokin M, Nolan M, Tyler CR, van Aerle R, Santos E, Brighty G (2006) Predicted exposures to steroid estrogens in UK rivers correlate with widespread sexual disruption in wild fish populations. Environ Health Perspect 114(Suppl 1):32–39

    Article  PubMed  Google Scholar 

  • Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50(7):3315–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341(6147):759–765

    Article  PubMed  CAS  Google Scholar 

  • La Sorte FA, Fink D, Buler JJ, Farnsworth A, Cabrera-Cruz SA (2017) Seasonal associations with urban light pollution for nocturnally migrating bird populations. Glob Chang Biol 23(11):4609–4619

    Article  PubMed  Google Scholar 

  • Lewis M (2016) AEWA at twenty: an appraisal of the African-Eurasian Waterbird agreement and its unique place in international environmental law. J Int Wildl Law Pol 19(1):22–61

    Article  Google Scholar 

  • Li H, Cheng F, Wei Y, Lydy MJ, You J (2017) Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: an overview. J Hazard Mater 324:258–271

    Article  CAS  PubMed  Google Scholar 

  • Longcore T, Rich C (2004) Ecological light pollution. Front Ecol Environ 2(4):191–198

    Article  Google Scholar 

  • Lowry H, Lill A, Wong BB (2013) Behavioural responses of wildlife to urban environments. Biol Rev 88(3):537–549

    Article  PubMed  Google Scholar 

  • Maheshwari R, Prasad M, Yadav RK, Sharma S, Chauhan V, Rani B (2012) Noise pollution: An annoyance to endurance. Bull Environ Pharmacol Life Sci 11:50–52

    Google Scholar 

  • Matsuguma Y, Takada H, Kumata H, Kanke H, Sakurai S, Suzuki T, Itoh M, Okazaki Y, Boonyatumanond R, Zakaria MP, Weerts S (2017) Microplastics in sediment cores from Asia and Africa as indicators of temporal trends in plastic pollution. Arch Environ Contam Toxicol 73(2):230–239

    Article  CAS  PubMed  Google Scholar 

  • Merriam-Webster (2020) Dictionary. Merriam-Webster.com

  • Miller TH, Bury NR, Owen SF, MacRae JI, Barron LP (2018) A review of the pharmaceutical exposome in aquatic fauna. Environ Pollut 239:129–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra A, Chatterjee C, Mandal FB (2011) Synthetic chemical pesticides and their effects on birds. Res J Environ Toxicol 5(2):81–96

    Article  CAS  Google Scholar 

  • Narancic T, Verstichel S, Reddy Chaganti S, Morales-Gamez L, Kenny ST, De Wilde B, Babu Padamati R, O’Connor KE (2018) Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ Sci Technol 52(18):10441–10452

    Article  CAS  PubMed  Google Scholar 

  • Navara KJ, Nelson RJ (2007) The dark side of light at night: physiological, epidemiological, and ecological consequences. J Pineal Res 43(3):215–224

    Article  CAS  PubMed  Google Scholar 

  • Newman JR (1979) Effects of industrial air pollution on wildlife. Biol Conserv 15(3):181–190

    Article  Google Scholar 

  • Newman JR, Schreiber RK, Novakova E (1992) Air pollution effects on terrestrial and aquatic animals. In: Barker JR, Tingey DT (eds) Air pollution effects on biodiversity. Springer, Boston

    Google Scholar 

  • Norstrom RJ, Muir DC (1994) Chlorinated hydrocarbon contaminants in arctic marine mammals. Sci Total Environ 154(2–3):107–128

    Article  CAS  PubMed  Google Scholar 

  • Norton SB, Rodier DJ, van der Schalie WH, Wood WP, Slimak MW, Gentile JH (1992) A framework for ecological risk assessment at the EPA. Environ Toxicol Chem 11:1663–1672

    Article  CAS  Google Scholar 

  • Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJ, Arshad M, Mahmood S (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427(6975):630–633

    Article  CAS  PubMed  Google Scholar 

  • Ohlendorf HM (1989) Bioaccumulation and effects of selenium in wildlife. Selenium Agric Environ 23:133–177

    CAS  Google Scholar 

  • Owens AC, Cochard P, Durrant J, Farnworth B, Perkin EK, Seymoure B (2020 Jan) Light pollution is a driver of insect declines. Biol Conserv 1(241):108259

    Article  Google Scholar 

  • Owens AC, Meyer-Rochow VB, Yang EC (2018) Short-and mid-wavelength artificial light influences the flash signals of Aquatica ficta fireflies (Coleoptera: Lampyridae). PLoS One 13(2):e0191576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters EC, Gassman NJ, Firman JC, Richmond RH, Power EA (1997) Ecotoxicology of tropical marine ecosystems. Environ Toxicol Chem Int J 16(1):12–40

    Article  CAS  Google Scholar 

  • Provencher JF, Bond AL, Avery-Gomm S, Borrelle SB, Rebolledo EL, Hammer S, Kühn S, Lavers JL, Mallory ML, Trevail A, Van Franeker JA (2017) Quantifying ingested debris in marine megafauna: a review and recommendations for standardization. Anal Methods 9(9):1454–1469

    Article  Google Scholar 

  • Rabalais NN, Turner RE, Wiseman WJ Jr (2002) Gulf of Mexico hypoxia, aka “the dead zone”. Annu Rev Ecol Syst 33(1):235–263

    Article  Google Scholar 

  • Rattner BA (2009) History of wildlife toxicology. Ecotoxicology 18(7):773–783

    Article  CAS  PubMed  Google Scholar 

  • Rattner BA (2018) Wildlife and environmental pollution. In: Scanes CG, Toukhsati SR (eds) Animals and human society. Academic Press, San Diego, pp 472–478

    Google Scholar 

  • Rodríguez A, Burgan G, Dann P, Jessop R, Negro JJ, Chiaradia A (2014) Fatal attraction of short-tailed shearwaters to artificial lights. PLoS One 9(10):e110114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roman L, Gilardi K, Lowenstine L, Hardesty BD, Wilcox C (2020) The need for attention to confirmation bias and confounding in the Field of plastic pollution and wildlife impacts: comment on “clinical pathology of plastic ingestion in marine birds and relationships with blood chemistry”. Environ Sci Technol 55(1):801–804

    Article  PubMed  CAS  Google Scholar 

  • Russell VS (1974) Pollution: concept and definition. Biol Conserv 6:157–161

    Article  Google Scholar 

  • Sandoz MA, Wooten KJ, Clendening SL, Hensley LL, Smith LR, Smith PN (2018) Transport mechanisms for veterinary pharmaceuticals from beef cattle feedyards to wetlands: is aerial deposition a contributing source? Agric Ecosyst Environ 252:14–21

    Article  Google Scholar 

  • Sands P (1991) European community environmental law: the evolution of a regional regime of international environmental protection. Yale Law J 100:2511–2523

    Article  Google Scholar 

  • Schowalter T, Willig MR, Presley SJ, Pandey M (2019) Warnings of an “insect apocalypse” are premature. Front Ecol Environ 17:547–547

    Article  Google Scholar 

  • Shaaban M, Van Zwieten L, Bashir S, Younas A, Núñez-Delgado A, Chhajro MA, Kubar KA, Ali U, Rana MS, Mehmood MA, Hu R (2018) A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J Environ Manage 15(228):429–440

    Article  CAS  Google Scholar 

  • Shannon G, McKenna MF, Angeloni LM, Crooks KR, Fristrup KM, Brown E, Warner KA, Nelson MD, White C, Briggs J, McFarland S (2016) A synthesis of two decades of research documenting the effects of noise on wildlife. Biol Rev 91(4):982–1005

    Article  PubMed  Google Scholar 

  • Shen M, Zeng G, Zhang Y, Wen X, Song B, Tang W (2019) Can biotechnology strategies effectively manage environmental (micro) plastics? Sci Total Environ 20(697):134200

    Article  CAS  Google Scholar 

  • Sofia D, Gioiella F, Lotrecchiano N, Giuliano A (2020) Mitigation strategies for reducing air pollution. Environ Sci Pollut Res 27(16):19226–19235

    Article  Google Scholar 

  • Spurgeon D, Lahive E, Robinson A, Short S, Kille P (2020) Species sensitivity to toxic substances: evolution, ecology and applications. Front Environ Sci 1:8

    Google Scholar 

  • Van Den Berg H, Manuweera G, Konradsen F (2017) Global trends in the production and use of DDT for control of malaria and other vector-borne diseases. Malar J 16(1):1–8

    CAS  Google Scholar 

  • Van Drecht G, Bouwman AF, Harrison J, Knoop JM (2009) Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Global Biogeochem Cycles 23:4

    Google Scholar 

  • Vegter AC, Barletta M, Beck CA, Borrero JC, Burton H, Campbell ML, Costa MF, Eriksen M, Eriksson C, Estrades A, Gilardi KV, Hardesty BD, do Sul JAI, Lavers JL, Lazar B, Lebreton L, Nichols WJ, Ribic CA, Ryan PG, Schuyler QA, SDA S, Takada H, Townsend KA, Wabnitz CCC, Wilcox C, Young LC, Hamann M (2014) Global research priorities to mitigate plastic pollution impacts on marine wildlife. Endanger Species Res 25:225–247

    Article  Google Scholar 

  • Venter ZS, Aunan K, Chowdhury S, Lelieveld J (2020) COVID-19 lockdowns cause global air pollution declines. Proc Natl Acad Sci 117(32):18984–18990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wartmann FM, Mackaness WA, Bauer N, Bolliger J, Kienast F (2019) Towards an interdisciplinary understanding of landscape qualities: wilderness, tranquillity and dark skies. In: Current trends in landscape research. Springer, Cham, pp 191–220

    Chapter  Google Scholar 

  • Wells FE, Gagnon MM (2020) A quarter century of recovery of the whelk Thais orbita from tributyltin pollution off Perth, Western Australia. Mar Pollut Bull 1(158):111408

    Article  CAS  Google Scholar 

  • Worm B, Lotze HK, Jubinville I, Wilcox C, Jambeck J (2017) Plastic as a persistent marine pollutant. Annu Rev Env Resour 17(42):1–26

    Article  Google Scholar 

  • Zhang W (2018 Mar) Global pesticide use: profile, trend, cost/benefit and more. Proc Int Acad Ecol Environ Sci 8(1):1

    Google Scholar 

  • Zhao H, Yuan M, Strokal M, Wu HC, Liu X, Murk A, Kroeze C, Osinga R (2021) Impacts of nitrogen pollution on corals in the context of global climate change and potential strategies to conserve coral reefs. Sci Total Environ 1:145017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Barnett Rattner and Jennifer Lynch provided constructive comments in earlier versions of this MS. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry M. Work .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Work, T.M. (2022). Pollution and Wildlife Health. In: Stephen, C. (eds) Wildlife Population Health. Springer, Cham. https://doi.org/10.1007/978-3-030-90510-1_16

Download citation

Publish with us

Policies and ethics