Skip to main content

Biological Application of Hybrid Phosphors

  • Chapter
  • First Online:
Hybrid Phosphor Materials

Abstract

Hybrid phosphors have gained large interest in the field of biomedical systems owing to their excellent physicochemical features. The potentiality of hybrid phosphors also lies in gathering favourable features of varied nanoforms in a single construct. An advantage of polymer as one of the components as host material for luminescent phosphors is their simple method of preparation, superior mechanical properties, higher flexibility and lighter density. The polymer films are prepared by melt casting or spin coating and materials of any desirable size or shape can be prepared from polymers. Moreover, manufacturing of polymers is cheaper and the energy consumption of making polymers is much lower. Different types of optically transparent polymers can easily be incorporated with phosphors. In a hybrid matrix it has higher thermal stability and luminescence output. Besides, being an agent for in-vivo imaging, hybrid phosphor based fluorescent materials also demonstrate several advantages for use in bioassay and therapy. Amongst different phosphor-based nanomaterials, upconversion phosphors are potential optical contrast agents for uses in biomedical appliance due to their long emission lifetime, sharp emission peaks, and their photostability. In this chapter, a comprehensive overview on hybrid upconversion phosphor is discussed with the basic conceptions that include the mechanisms for the illustration of different fluorescent behaviours, the different methods applied for the preparation of these phosphors, and finally the uses of these materials in biological arena. In addition, new trends in these type of materials are summarized with future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reddy, K.L., Kumar, A.M., Dhir, A., Krishnan, V.: Selective and sensitive fluorescent detection of picric acid by new pyrene and anthracene based copper complexes. J. Fluoresc. 26, 2041–2046 (2016). https://doi.org/10.1007/s10895-016-1898-9

    Article  CAS  Google Scholar 

  2. Venkateswarulu, M., Gaur, P., Koner, R.R.: Sensitive molecular optical material for signaling primary amine vapors. Sens. Actuators B Chem. 210, 144–148 (2015). https://doi.org/10.1016/j.snb.2014.12.082

    Article  CAS  Google Scholar 

  3. Xu, C.T., Svenmarker, P., Liu, H., Wu, X., Messing, M.E., Wallenberg, L.R., Andersson-Engels, S.: High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles. ACS Nano 6, 4788–4795 (2012). https://doi.org/10.1021/nn3015807

    Article  CAS  Google Scholar 

  4. Liu, X., Yan, C.-H., Capobianco, J.A.: Photon upconversion nanomaterials. Chem. Soc. Rev. 44, 1299–1301 (2015). https://doi.org/10.1039/C5CS90009C

    Article  CAS  Google Scholar 

  5. Yi, G.-S., Chow, G.-M.: Water-soluble NaYF4:Yb, Er(Tm)/NaYF4/Polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19, 341–343 (2007). https://doi.org/10.1021/cm062447y

    Article  CAS  Google Scholar 

  6. Huang, R.-W., Wei, Y.-S., Dong, X.-Y., Wu, X.-H., Du, C.-X., Zang, S.-Q., Mak, T.C.W.: Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 9, 689–697 (2017). https://doi.org/10.1038/nchem.2718

    Article  CAS  Google Scholar 

  7. Auzel, F.: Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004). https://doi.org/10.1021/cr020357g

    Article  CAS  Google Scholar 

  8. Stanisavljevic, M., Krizkova, S., Vaculovicova, M., Kizek, R., Adam, V.: Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens. Bioelectron. 74, 562–574 (2015). https://doi.org/10.1016/j.bios.2015.06.076

    Article  CAS  Google Scholar 

  9. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T.: Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008). https://doi.org/10.1038/nmeth.1248

    Article  CAS  Google Scholar 

  10. Haase, M., Schäfer, H.: Upconverting nanoparticles. Angew. Chem. Int. Ed. Engl. 50, 5808–5829 (2011). https://doi.org/10.1002/anie.201005159

    Article  CAS  Google Scholar 

  11. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. https://doi.org/10.1021/cr400425h. Accessed 24 Sept 2020

  12. Wu, S., Butt, H.-J.: Near-infrared-sensitive materials based on upconverting nanoparticles. Adv. Mater. 28, 1208–1226 (2016). https://doi.org/10.1002/adma.201502843

    Article  CAS  Google Scholar 

  13. Zhou, J., Liu, Q., Feng, W., Sun, Y., Li, F.: Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015). https://doi.org/10.1021/cr400478f

    Article  CAS  Google Scholar 

  14. Zhou, B., Shi, B., Jin, D., Liu, X.: Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015). https://doi.org/10.1038/nnano.2015.251

    Article  CAS  Google Scholar 

  15. Xu, J., Yang, P., Sun, M., Bi, H., Liu, B., Yang, D., Gai, S., He, F., Lin, J.: Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 11, 4133–4144 (2017). https://doi.org/10.1021/acsnano.7b00944

    Article  CAS  Google Scholar 

  16. Song, R., Murphy, M., Li, C., Ting, K., Soo, C., Zheng, Z.: Current development of biodegradable polymeric materials for biomedical applications. Drug. Des. Devel. Ther. 12, 3117–3145 (2018). https://doi.org/10.2147/DDDT.S165440

    Article  CAS  Google Scholar 

  17. Wu, X., Zhang, Y., Takle, K., Bilsel, O., Li, Z., Lee, H., Zhang, Z., Li, D., Fan, W., Duan, C., Chan, E.M., Lois, C., Xiang, Y., Han, G.: Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10, 1060–1066 (2016). https://doi.org/10.1021/acsnano.5b06383

    Article  CAS  Google Scholar 

  18. Wang, X., Valiev, R.R., Ohulchanskyy, T.Y., Ågren, H., Yang, C., Chen, G.: Dye-sensitized lanthanide-doped upconversion nanoparticles. Chem Soc Rev 46, 4150–4167 (2017). https://doi.org/10.1039/C7CS00053G

    Article  CAS  Google Scholar 

  19. Nienhaus, L., Wu, M., Bulović, V., Baldo, M.A., Bawendi, M.G.: Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion. Dalton Trans. 47, 8509–8516 (2018). https://doi.org/10.1039/C8DT00419F

    Article  CAS  Google Scholar 

  20. Mir, S.H., Ochiai, B.: Fabrication of polymer-Ag honeycomb hybrid film by metal complexation induced phase separation at the air/water interface. Macromol. Mater. Eng. 301, 1026–1031 (2016). https://doi.org/10.1002/mame.201600035

    Article  CAS  Google Scholar 

  21. Mir, S.H., Ochiai, B.: Conductive polymer-Ag honeycomb thin film: the factors affecting the complexity of the microstructure. J. Electrochem. Soc. 165, B3030 (2018). https://doi.org/10.1149/2.0031808jes

    Article  CAS  Google Scholar 

  22. Akinoglu, G.E., Mir, S.H., Gatensby, R., Rydzek, G., Mokarian-Tabari, P.: Block copolymer derived vertically coupled plasmonic arrays for surface-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces 12, 23410–23416 (2020). https://doi.org/10.1021/acsami.0c03300

    Article  CAS  Google Scholar 

  23. Sciortino, F., Mir, S.H., Pakdel, A., Oruganti, A., Abe, H., Witecka, A., Shri, D.N.A., Rydzek, G., Ariga, K.: Saloplastics as multiresponsive ion exchange reservoirs and catalyst supports. J. Mater. Chem. A 8, 17713–17724 (2020). https://doi.org/10.1039/D0TA05901C

    Article  CAS  Google Scholar 

  24. Mir, S.H., Ebata, K., Yanagiya, H., Ochiai, B.: Alignment of Ag nanoparticles with graft copolymer bearing thiocarbonyl moieties. Microsyst. Technol. 24, 605–611 (2018). https://doi.org/10.1007/s00542-017-3418-5

    Article  CAS  Google Scholar 

  25. Khosla, A., Shah, S., Shiblee, M.N.I., Mir, S.H., Nagahara, L.A., Thundat, T., Shekar, P.K., Kawakami, M., Furukawa, H.: Carbon fiber doped thermosetting elastomer for flexible sensors: physical properties and microfabrication. Sci. Rep. 8, 12313 (2018). https://doi.org/10.1038/s41598-018-30846-3

    Article  CAS  Google Scholar 

  26. Mir, S.H., Rydzek, G., Nagahara, L.A., Khosla, A., Mokarian-Tabari, P.: Review—recent advances in block-copolymer nanostructured subwavelength antireflective surfaces. J. Electrochem. Soc. 167, 037502 (2019). https://doi.org/10.1149/2.0022003JES

  27. Mir, S.H., Ochiai, B.: Development of hierarchical Polymer@Pd nanowire-network: synthesis and application as highly active recyclable catalyst and printable conductive ink. ChemistryOpen 5, 213–218 (2016). https://doi.org/10.1002/open.201600009

    Article  CAS  Google Scholar 

  28. Mir, S.H., Ochiai, B.: One-pot fabrication of hollow Polymer@Ag nanospheres for printable translucent conductive coatings. Adv. Mater. Interfaces 4, 1601198 (2017). https://doi.org/10.1002/admi.201601198

    Article  CAS  Google Scholar 

  29. Mir, S.H., Hasan, P.M.Z., Danish, E.Y., Aslam, M.: Pd-induced phase separation in poly(methyl methacrylate) telopolymer: synthesis of nanostructured catalytic Pd nanorods. Colloid Polym. Sci. (2020). https://doi.org/10.1007/s00396-020-04630-7

    Article  Google Scholar 

  30. Mir, S.H.: Development of organic-inorganic hybrid functional nanomaterials by metal-complexation induced self-assembly processes. 山形大学 (2016)

    Google Scholar 

  31. Mir, S.H., Nagahara, L.A., Thundat, T., Mokarian-Tabari, P., Furukawa, H., Khosla, A.: Review—organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J. Electrochem. Soc. 165, B3137–B3156 (2018). https://doi.org/10.1149/2.0191808jes

    Article  CAS  Google Scholar 

  32. Wang, L., Zhang, Y., Zhu, Y.: One-pot synthesis and strong near-infrared upconversion luminescence of poly(acrylic acid)-functionalized YF3:Yb3+/Er3+ nanocrystals. Nano Res. 3, 317–325 (2010). https://doi.org/10.1007/s12274-010-1035-z

    Article  CAS  Google Scholar 

  33. Feng, S., Xu, R.: New materials in hydrothermal synthesis. Acc. Chem. Res. 34, 239–247 (2001). https://doi.org/10.1021/ar0000105

    Article  CAS  Google Scholar 

  34. Lingeshwar Reddy, K., Srinivas, V., Shankar, K.R., Kumar, S., Sharma, V., Kumar, A., Bahuguna, A., Bhattacharyya, K., Krishnan, V.: Enhancement of luminescence intensity in red emitting NaYF4:Yb/Ho/Mn upconversion nanophosphors by variation of reaction parameters. J. Phys.. Chem. C 121, 11783–11793 (2017). https://doi.org/10.1021/acs.jpcc.7b01334

    Article  CAS  Google Scholar 

  35. Zhang, F., Li, J., Shan, J., Xu, L., Zhao, D.: Shape, size, and phase-controlled rare-Earth fluoride nanocrystals with optical up-conversion properties. Chemistry 15, 11010–11019 (2009). https://doi.org/10.1002/chem.200900861

    Article  CAS  Google Scholar 

  36. Du, H., Zhang, W., Sun, J.: Structure and upconversion luminescence properties of BaYF5:Yb3+, Er3+ nanoparticles prepared by different methods. J. Alloy. Compd. 509, 3413–3418 (2011). https://doi.org/10.1016/j.jallcom.2010.12.101

    Article  CAS  Google Scholar 

  37. Yi, G., Lu, H., Zhao, S., Ge, Y., Yang, W., Chen, D., Guo, L.-H.: Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 4, 2191–2196 (2004). https://doi.org/10.1021/nl048680h

    Article  CAS  Google Scholar 

  38. Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., Bruchez, M.P.: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46 (2003). https://doi.org/10.1038/nbt764

    Article  CAS  Google Scholar 

  39. Xu, Z., Li, C., Yang, P., Hou, Z., Zhang, C., Lin, J.: Uniform Ln(OH)3 and Ln2O3 (Ln = Eu, Sm) submicrospindles: facile synthesis and characterization. Cryst. Growth Des. 9, 4127–4135 (2009). https://doi.org/10.1021/cg9003559

    Article  CAS  Google Scholar 

  40. Mi, C., Tian, Z., Cao, C., Wang, Z., Mao, C., Xu, S.: Novel microwave-assisted solvothermal synthesis of NaYF4:Yb, Er upconversion nanoparticles and their application in cancer cell imaging. Langmuir 27, 14632–14637 (2011). https://doi.org/10.1021/la204015m

    Article  CAS  Google Scholar 

  41. Reddy, K.L., Prabhakar, N., Arppe, R., Rosenholm, J.M., Krishnan, V.: Microwave-assisted one-step synthesis of acetate-capped NaYF4:Yb/Er upconversion nanocrystals and their application in bioimaging. J. Mater. Sci. 52, 5738–5750 (2017). https://doi.org/10.1007/s10853-017-0809-z

    Article  CAS  Google Scholar 

  42. Abram, C., Mezhericher, M., Beyrau, F., Stone, H.A., Ju, Y.: Flame synthesis of nanophosphors using sub-micron aerosols. Proc. Combust. Inst. 37, 1231–1239 (2019). https://doi.org/10.1016/j.proci.2018.06.040

    Article  CAS  Google Scholar 

  43. Zhang, J., Riesen, N., Riesen, H.: Mechanochemically prepared SrFCl nanophosphor co-doped with Yb3+ and Er3+ for detecting ionizing radiation by upconversion luminescence. Nanoscale 9, 15958–15966 (2017). https://doi.org/10.1039/C7NR05108E

    Article  CAS  Google Scholar 

  44. Martín-Rodríguez, R., Valiente, R., Pesquera, C., González, F., Blanco, C., Potin, V., Marco de Lucas, M.C.: Optical properties of nanocrystalline-coated Y2O3:Er3+, Yb3+ obtained by mechano-chemical and combustion synthesis. J. Lumin. 129, 1109–1114 (2009). https://doi.org/10.1016/j.jlumin.2009.05.012

    Article  CAS  Google Scholar 

  45. Pârvulescu, V.I., Hardacre, C.: Catalysis in ionic liquids. Chem. Rev. 107, 2615–2665 (2007). https://doi.org/10.1021/cr050948h

    Article  CAS  Google Scholar 

  46. Lovingood, D.D., Strouse, G.F.: Microwave induced in-situ active ion etching of growing InP nanocrystals. Nano Lett. 8, 3394–3397 (2008). https://doi.org/10.1021/nl802075j

    Article  CAS  Google Scholar 

  47. Wang, F., Tan, W.B., Zhang, Y., Fan, X., Wang, M.: Luminescent nanomaterials for biological labelling. Nanotechnology 17, R1–R13 (2005). https://doi.org/10.1088/0957-4484/17/1/R01

    Article  CAS  Google Scholar 

  48. Wang, W., Cheng, Z., Yang, P., Hou, Z., Li, C., Li, G., Dai, Y., Lin, J.: Patterning of YVO4:Eu3+ luminescent films by soft lithography. Adv. Func. Mater. 21, 456–463 (2011). https://doi.org/10.1002/adfm.201001467

    Article  CAS  Google Scholar 

  49. Abdul Jalil, R., Zhang, Y.: Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 29, 4122–4128 (2008). https://doi.org/10.1016/j.biomaterials.2008.07.012

    Article  CAS  Google Scholar 

  50. Gai, S., Li, C., Yang, P., Lin, J.: Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 114, 2343–2389 (2014). https://doi.org/10.1021/cr4001594

    Article  CAS  Google Scholar 

  51. Hao, J., Cocivera, M.: Blue cathodoluminescence from Ba2B5O9Cl: Eu phosphor thin films on glass substrates. Appl. Phys. Lett. 81, 4154–4156 (2002). https://doi.org/10.1063/1.1525879

    Article  CAS  Google Scholar 

  52. Lenaerts, P., Driesen, K., Van Deun, R., Binnemans, K.: Covalent coupling of luminescent Tris(2-thenoyltrifluoroacetonato)lanthanide(III) complexes on a Merrifield Resin. Chem. Mater. 17, 2148–2154 (2005). https://doi.org/10.1021/cm0486868

    Article  CAS  Google Scholar 

  53. Pei, J., Liu, X.-L., Yu, W.-L., Lai, Y.-H., Niu, Y.-H., Cao, Y.: Efficient energy transfer to achieve narrow bandwidth red emission from Eu3+-grafting conjugated polymers. Macromolecules 35, 7274–7280 (2002). https://doi.org/10.1021/ma020529b

    Article  CAS  Google Scholar 

  54. Vicinelli, V., Ceroni, P., Maestri, M., Balzani, V., Gorka, M., Vögtle, F.: Luminescent lanthanide ions hosted in a fluorescent polylysin dendrimer. Antenna-like sensitization of visible and near-infrared emission. J. Am. Chem. Soc. 124, 6461–6468 (2002). https://doi.org/10.1021/ja017672p

    Article  CAS  Google Scholar 

  55. Kawa, M., Fréchet, J.M.J.: Self-assembled lanthanide-cored dendrimer complexes: enhancement of the luminescence properties of lanthanide ions through site-isolation and antenna effects. Chem. Mater. 10, 286–296 (1998). https://doi.org/10.1021/cm970441q

    Article  CAS  Google Scholar 

  56. Pan, L., Adams, K.M., Hernandez, H.E., Wang, X., Zheng, C., Hattori, Y., Kaneko, K.: Porous lanthanide-organic frameworks: synthesis, characterization, and unprecedented gas adsorption properties. J. Am. Chem. Soc. 125, 3062–3067 (2003). https://doi.org/10.1021/ja028996w

    Article  CAS  Google Scholar 

  57. Allendorf, M.D., Bauer, C.A., Bhakta, R.K., Houk, R.J.T.: Luminescent metal–organic frameworks. Chem. Soc. Rev. 38, 1330–1352 (2009). https://doi.org/10.1039/B802352M

    Article  CAS  Google Scholar 

  58. Férey, G.: Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2007). https://doi.org/10.1039/B618320B

    Article  Google Scholar 

  59. Sangeetha, N.M., Maitra, U.: Supramolecular gels: functions and uses. Chem. Soc. Rev. 34, 821–836 (2005). https://doi.org/10.1039/B417081B

    Article  CAS  Google Scholar 

  60. Kramarenko, E.Yu., Philippova, O.E., Khokhlov, A.R.: Polyelectrolyte networks as highly sensitive polymers. Polym. Sci. Ser. C 48, 1 (2006). https://doi.org/10.1134/S1811238206010012

  61. Winkleman, A., Bracher, P.J., Gitlin, I., Whitesides, G.M.: Fabrication and manipulation of ionotropic hydrogels cross-linked by paramagnetic ions. Chem. Mater. 19, 1362–1368 (2007). https://doi.org/10.1021/cm062626f

    Article  CAS  Google Scholar 

  62. Althues, H., Henle, J., Kaskel, S.: Functional inorganic nanofillers for transparent polymers. Chem. Soc. Rev. 36, 1454–1465 (2007). https://doi.org/10.1039/B608177K

    Article  CAS  Google Scholar 

  63. Goubard, F., Vidal, F., Bazzi, R., Tillement, O., Chevrot, C., Teyssié, D.: Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films. J. Lumin. 126, 289–296 (2007). https://doi.org/10.1016/j.jlumin.2006.07.009

    Article  CAS  Google Scholar 

  64. Dekker, R., Klunder, D.J.W., Borreman, A., Diemeer, M.B.J., Wörhoff, K., Driessen, A., Stouwdam, J.W., van Veggel, F.C.J.M.: Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides. Appl. Phys. Lett. 85, 6104–6106 (2004). https://doi.org/10.1063/1.1840110

    Article  CAS  Google Scholar 

  65. Introduction to Biophotonics. Wiley. In: Wiley.com. https://www.wiley.com/en-us/Introduction+to+Biophotonics-p-9780471287704. Accessed 26 Sept 2020

  66. Chen, G., Ohulchanskyy, T.Y., Liu, S., Law, W.-C., Wu, F., Swihart, M.T., Ågren, H., Prasad, P.N.: Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 6, 2969–2977 (2012). https://doi.org/10.1021/nn2042362

    Article  CAS  Google Scholar 

  67. Xiong, L., Yang, T., Yang, Y., Xu, C., Li, F.: Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31, 7078–7085 (2010). https://doi.org/10.1016/j.biomaterials.2010.05.065

    Article  CAS  Google Scholar 

  68. Nyk, M., Kumar, R., Ohulchanskyy, T.Y., Bergey, E.J., Prasad, P.N.: High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 8, 3834–3838 (2008). https://doi.org/10.1021/nl802223f

    Article  CAS  Google Scholar 

  69. Chatterjee, D.K., Rufaihah, A.J., Zhang, Y.: Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29, 937–943 (2008). https://doi.org/10.1016/j.biomaterials.2007.10.051

    Article  CAS  Google Scholar 

  70. Ostrowski, A.D., Chan, E.M., Gargas, D.J., Katz, E.M., Han, G., Schuck, P.J., Milliron, D.J., Cohen, B.E.: Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS Nano 6, 2686–2692 (2012). https://doi.org/10.1021/nn3000737

    Article  CAS  Google Scholar 

  71. Esipova, T.V., Ye, X., Collins, J.E., Sakadžić, S., Mandeville, E.T., Murray, C.B., Vinogradov, S.A.: Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. PNAS 109, 20826–20831 (2012). https://doi.org/10.1073/pnas.1213291110

    Article  Google Scholar 

  72. Xu, C.T., Svensson, N., Axelsson, J., Svenmarker, P., Somesfalean, G., Chen, G., Liang, H., Liu, H., Zhang, Z., Andersson-Engels, S.: Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media. Appl. Phys. Lett. 93, 171103 (2008). https://doi.org/10.1063/1.3005588

  73. Xu, Z., Li, C., Ma, P., Hou, Z., Yang, D., Kang, X., Lin, J.: Facile synthesis of an up-conversion luminescent and mesoporous Gd 2 O 3: Er 3+ @ n SiO 2 @ m SiO 2 nanocomposite as a drug carrier. Nanoscale 3, 661–667 (2011). https://doi.org/10.1039/C0NR00695E

    Article  CAS  Google Scholar 

  74. Yang, D., Ma, P., Hou, Z., Cheng, Z., Li, C., Lin, J.: Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 44, 1416–1448 (2015). https://doi.org/10.1039/C4CS00155A

    Article  CAS  Google Scholar 

  75. Liu, J., Bu, W., Pan, L., Shi, J.: NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. 52, 4375–4379 (2013). https://doi.org/10.1002/anie.201300183

    Article  CAS  Google Scholar 

  76. Lu, F., Yang, L., Ding, Y., Zhu, J.-J.: Highly emissive Nd3+-sensitized multilayered upconversion nanoparticles for efficient 795 nm operated photodynamic therapy. Adv. Func. Mater. 26, 4778–4785 (2016). https://doi.org/10.1002/adfm.201600464

    Article  CAS  Google Scholar 

  77. Wang, C., Cheng, L., Liu, Z.: Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32, 1110–1120 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.069

    Article  CAS  Google Scholar 

  78. Chabner, B.A., Roberts, T.G.: Chemotherapy and the war on cancer. Nat. Rev. Cancer 5, 65–72 (2005). https://doi.org/10.1038/nrc1529

    Article  CAS  Google Scholar 

  79. Liu, J., Bu, W., Pan, L., Zhang, S., Chen, F., Zhou, L., Zhao, K., Peng, W., Shi, J.: Simultaneous nuclear imaging and intranuclear drug delivery by nuclear-targeted multifunctional upconversion nanoprobes. Biomaterials 33, 7282–7290 (2012). https://doi.org/10.1016/j.biomaterials.2012.06.035

    Article  CAS  Google Scholar 

  80. Wisser, M.D., Fischer, S., Siefe, C., Alivisatos, A.P., Salleo, A., Dionne, J.A.: Improving quantum yield of upconverting nanoparticles in aqueous media via emission sensitization. Nano Lett. 18, 2689–2695 (2018). https://doi.org/10.1021/acs.nanolett.8b00634

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mir, S.H., Mohammad Ziaul Hyder, M.K., Chowdhury, A.M.M.A. (2022). Biological Application of Hybrid Phosphors. In: Upadhyay, K., Thomas, S., Tamrakar, R.K. (eds) Hybrid Phosphor Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-90506-4_9

Download citation

Publish with us

Policies and ethics