Skip to main content

SORGATE: Extracting Geometry and Texture from Images of Solids of Revolution

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13017))

Included in the following conference series:

  • 1165 Accesses

Abstract

We describe SORGATE, a procedure for extracting geometry and texture from images of solids of revolution (SORs). It uses multivariate optimization to determine the parameters of the camera in order to build the viewing transform, as well as to reconstruct the geometry of the SOR using the silhouette. In addition to individual image analyses, it can use the data extracted from the same SOR viewed from different directions to produce a single, composite texture which can be combined with their blended geometries to produce a reconstructed 3D model. No prior knowledge other than the object’s rotational symmetry is required. Camera viewing parameters are derived directly from the image.

SORGATE is useful when 3D modeling of SORs is needed yet direct measurement the physical objects is infeasible. As it does not require camera calibration, it is also fast, inexpensive, and practical. One use case might be for researchers and curators who wish to display and/or analyze the art on historical vases; metric reconstruction and proper texturing of the objects would allow this without requiring viewing in person.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to variations in camera pitch (\(\beta _{\mathrm {cam}}\)), textures need to be aligned vertically as well as horizontally, if only slightly. Figure 8 exaggerates this for illustration.

References

  1. Overbeck Vase, ca 1920 | Antiques Roadshow | PBS (2017). https://image.pbs.org/video-assets/pbs/antiques-roadshow/256002/images/mezzanine_222.jpg.crop.379x212.jpg

  2. Boyer, E., Berger, M.O.: 3D surface reconstruction using occluding contours. Int. J. Comput. Vis. 22(3), 219–233 (1997)

    Article  Google Scholar 

  3. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings Eighth IEEE International Conference on Computer Vision (ICCV 2001) 1, pp. 105–112 (2001)

    Google Scholar 

  4. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(6), 679–698 (1986)

    Article  Google Scholar 

  5. Chellali, R., Fremont, V., Maaoui, C.: A new approach to 3-D modeling of objects with axial symmetry. IEEE Trans. Ind. Electron. 50(4), 1–7 (2003)

    Article  Google Scholar 

  6. Colombo, C., Del Bimbo, A., Pernici, F.: Uncalibrated 3D metric reconstruction and flattened texture acquisition from a single view of a surface of revolution. In: Proceedings - 1st International Symposium on 3D Data Processing Visualization and Transmission, 3DPVT 2002, vol. 27(1), pp. 277–284 (2002)

    Google Scholar 

  7. Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and Rendering Architecture from Photographs: A hybrid geometry-and image-based approach. Technical report (1996)

    Google Scholar 

  8. Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)

    Article  Google Scholar 

  9. Ghosh, S., Das, N., Das, I., Maulik, U.: Understanding deep learning techniques for image segmentation. ACM Comput. Surv. 52, 1–35 (2019)

    Article  Google Scholar 

  10. Goshtasby, A.A.: Image Registration: Principles, Tools and Methods. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2458-0

    Book  MATH  Google Scholar 

  11. Jain, A.: Automatic 3D Reconstruction for Symmetric Shapes (2016)

    Google Scholar 

  12. Jolliffe, I.: Principal Component Analysis. Springer, New York (1986). https://doi.org/10.1007/978-1-4757-1904-8

    Book  MATH  Google Scholar 

  13. Ledesma, A.: SORGATE: Surface of Revolution Geometry and Texture Extraction. Master’s thesis, May 2021

    Google Scholar 

  14. Liu, C., Hu, W.: Ellipse fitting for imaged cross sections of a surface of revolution. Pattern Recogn. 48(4), 1440–1454 (2015). https://doi.org/10.1016/j.patcog.2014.09.028

    Article  MATH  Google Scholar 

  15. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  16. Pernici, F.: Two Results in Computer Vision using Projective Geometry. Ph.D. thesis, University of Florence (2005). https://www.micc.unifi.it/pernici/index_files/PhdThesis.pdf

  17. Ponce, J., Chelberg, D., Mann, W.B.: Invariant properties of straight homogeneous generalized cylinders and their contours. IEEE Trans. Pattern Anal. Mach. Intell. 11(9), 951–966 (1989)

    Article  Google Scholar 

  18. Puech, W., Chassery, J.M., Pitas, I.: Cylindrical surface localization in monocular vision. Pattern Recogn. Lett. 18(8), 711–722 (1997)

    Article  Google Scholar 

  19. Rother, C., Kolmogorov, V., Blake, A.: GrabCut. ACM Trans. Graph. 23(3), 309–314 (2004)

    Article  Google Scholar 

  20. Shirley, P., Marschner, S.: Viewing. In: Fundamentals of Computer Graphics, 3rd edn. pp. 141–159. A K Peters/CRC Press, Boca Raton (2009). Chap. 7

    Google Scholar 

  21. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2011). https://doi.org/10.1007/978-1-84882-935-0

    Book  MATH  Google Scholar 

  22. Tsai, R.Y.: A versatile camera calibration techniaue for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses ROGER. IEEE J. Robot. Autom. 3(4), 323–344 (1987)

    Article  Google Scholar 

  23. Ulupinar, F., Nevatia, R.: Shape from contour: straight homogeneous generalized cylinders and constant cross section generalized cylinders. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 120–135 (1995)

    Article  Google Scholar 

  24. Wong, K.Y.K., Mendonça, P.R., Cipolla, R.: Reconstruction of surfaces of revolution from single uncalibrated views. Image Vis. Comput. 22(10 SPEC. ISS.), 829–836 (2004)

    Article  Google Scholar 

  25. Worring, M., Smeulders, A.W.: Digital curvature estimation. Comput. Vis. Image Underst. 58(3), 366–382 (1993)

    Article  Google Scholar 

  26. Zhang, M., Zheng, Y., Liu, Y.: Using silhouette for pose estimation of object with surface of revolution. In: Proceedings - International Conference on Image Processing, ICIP, pp. 333–336 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ledesma, A., Lewis, R.R. (2021). SORGATE: Extracting Geometry and Texture from Images of Solids of Revolution. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13017. Springer, Cham. https://doi.org/10.1007/978-3-030-90439-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90439-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90438-8

  • Online ISBN: 978-3-030-90439-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics