Skip to main content

Interferometric Biosensing

  • Chapter
  • First Online:
Single Molecule Sensing Beyond Fluorescence

Abstract

Interferometric biosensors characterise biological specimens via the effects they have on the interference between two optical fields. Generally, one field is arranged to interact with the specimen, perhaps propagating through it and incurring a phase shift, or scattering from it. Interference with the second field can both allow phase shifts to be resolved, and amplify weak scattering signals to measurable levels. While widely used in biological imaging, recent experiments have shown that interferometric sensors are also capable of probing the size and dynamics of single protein molecules. This chapter reviews this recent progress, outlines the concepts and techniques involved, and discusses areas in which such single-molecule interferometric biosensors have been applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is the state of a laser free of technical noise and without any quantum correlations between photons.

  2. 2.

    \(Var[X](f)=\int _{f-\mathrm{RBW}/2}^{f+\mathrm{RBW}/2}|X(f')|^2df'\) whith RBW the resolution bandwidth.

References

  1. Toru Yoshizawa. Handbook of optical metrology principles and applications, 2017.

    Google Scholar 

  2. Jeremy B Sanderson. Phase Contrast Microscopy. American Cancer Society, 2001.

    Google Scholar 

  3. Jianling Chen, Yan Xu, Xiaohua Lv, Xiaomin Lai, and Shaoqun Zeng. Super-resolution differential interference contrast microscopy by structured illumination. Opt. Express, 21(1):112–121, 2013.

    Google Scholar 

  4. Dan P Popescu, Costel Flueraru, Youxin Mao, Shoude Chang, John Disano, Sherif Sherif, Michael G Sowa, et al. Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications. Biophysical reviews, 3(3):155–169, 2011.

    Google Scholar 

  5. Yongkang Gao, Qiaoqiang Gan, Zheming Xin, Xuanhong Cheng, and Filbert J Bartoli. Plasmonic mach–zehnder interferometer for ultrasensitive on-chip biosensing. ACS nano, 5(12):9836–9844, 2011.

    Google Scholar 

  6. PI Nikitin, AN Grigorenko, AA Beloglazov, MV Valeiko, AI Savchuk, OA Savchuk, G Steiner, C Kuhne, A Huebner, and R Salzer. Surface plasmon resonance interferometry for micro-array biosensing. Sensors and Actuators A: Physical, 85(1-3):189–193, 2000.

    Article  CAS  Google Scholar 

  7. Tyler S Ralston, Daniel L Marks, P Scott Carney, and Stephen A Boppart. Interferometric synthetic aperture microscopy. Nature Physics, 3(2):129–134, 2007.

    Google Scholar 

  8. Ivano Alessandri and John R. Lombardi. Enhanced raman scattering with dielectrics. Chemical Reviews, 116(24):14921–14981, 2016.

    Article  CAS  Google Scholar 

  9. Joshua A Riback, Micayla A Bowman, Adam M Zmyslowski, Kevin W Plaxco, Patricia L Clark, and Tobin R Sosnick. Commonly used fret fluorophores promote collapse of an otherwise disordered protein. Proceedings of the National Academy of Sciences, 116(18):8889–8894, 2019.

    Google Scholar 

  10. Michael S Woody, Donald A Winkelmann, Marco Capitanio, E Michael Ostap, and Yale E Goldman. Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. Elife, 8:e49266, 2019.

    Google Scholar 

  11. Mayumi Nakanishi-Matsui, Sachiko Kashiwagi, Hiroyuki Hosokawa, Daniel J. Cipriano, Stanley D. Dunn, Yoh Wada, and Masamitsu Futai. Stochastic high-speed rotation of escherichia coli atp synthase f1 sector. The Journal of Biological Chemistry, 281:4126–4131, Feb 2006.

    Google Scholar 

  12. Mika Hilvo, Lina Baranauskiene, Anna Maria Salzano, Andrea Scaloni, Daumantas Matulis, Alessio Innocenti, Andrea Scozzafava, Simona Maria Monti, Anna Di Fiore, Giuseppina De Simone, Mikaela Lindfors, Janne Jänis, Jarkko Valjakka, Silvia Pastoreková, Jaromir Pastorek, Markku S. Kulomaa, Henri R. Nordlund, Claudiu T. Supuran, and Seppo Parkkila. Biochemical characterization of ca ix, one of the most active carbonic anhydrase isozymes*. Journal of Biological Chemistry, 283(41):27799–27809, 2008.

    Google Scholar 

  13. Haruto Ishikawa, Kyungwon Kwak, Jean K. Chung, Seongheun Kim, and Michael D. Fayer. Direct observation of fast protein conformational switching. Proceedings of the National Academy of Sciences, 105(25):8619–8624, 2008.

    Article  CAS  Google Scholar 

  14. Joshua C Vaughan, Shu Jia, and Xiaowei Zhuang. Ultrabright photoactivatable fluorophores created by reductive caging. Nature methods, 9(12):1181–1184, 2012.

    Google Scholar 

  15. Jonathan B Grimm, Brian P English, Jiji Chen, Joel P Slaughter, Zhengjian Zhang, Andrey Revyakin, Ronak Patel, John J Macklin, Davide Normanno, Robert H Singer, et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nature methods, 12(3):244–250, 2015.

    Google Scholar 

  16. Gavin Young, Nikolas Hundt, Daniel Cole, Adam Fineberg, Joanna Andrecka, Andrew Tyler, Anna Olerinyova, Ayla Ansari, Erik G Marklund, Miranda P Collier, et al. Quantitative mass imaging of single biological macromolecules. Science, 360(6387):423–427, 2018.

    Google Scholar 

  17. NP Mauranyapin, LS Madsen, MA Taylor, M Waleed, and WP Bowen. Evanescent single-molecule biosensing with quantum-limited precision. Nature Photonics, 11(8):477–481, 2017.

    Article  CAS  Google Scholar 

  18. Joanna Andrecka, Jaime Ortega Arroyo, Katie Lewis, Robert A. Cross, and Philipp Kukura. Label-free imaging of microtubules with sub-nm precision using interferometric scattering microscopy. Biophysical Journal, 110(1):214–217, 2016.

    Google Scholar 

  19. Lewis S Mosby, Nikolas Hundt, Gavin Young, Adam Fineberg, Marco Polin, Satyajit Mayor, Philipp Kukura, and Darius V Köster. Myosin ii filament dynamics in actin networks revealed with interferometric scattering microscopy. Biophysical Journal, 2020.

    Google Scholar 

  20. J Ortega Arroyo, J Andrecka, KM Spillane, N Billington, Y Takagi, JR Sellers, and P Kukura. Label-free, all-optical detection, imaging, and tracking of a single protein. Nano letters, 14(4):2065–2070, 2014.

    Google Scholar 

  21. Joanna Andrecka, Jaime Ortega Arroyo, Katie Lewis, Robert A Cross, and Philipp Kukura. Label-free imaging of microtubules with sub-nm precision using interferometric scattering microscopy. Biophysical journal, 110(1):214–217, 2016.

    Google Scholar 

  22. M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold. Molecular weight dependence of a whispering gallery mode biosensor. Applied Physics Letters, 87(22):223901, 2005.

    Google Scholar 

  23. Adam Fineberg, Thomas Surrey, and Philipp Kukura. Quantifying the monomer–dimer equilibrium of tubulin with mass photometry. Journal of molecular biology, 432(23):6168–6172, 2020.

    Google Scholar 

  24. Anirban Mitra, Filipp Ignatovich, and Lukas Novotny. Real-time optical detection of single human and bacterial viruses based on dark-field interferometry. Biosensors and Bioelectronics, 31(1):499–504, 2012.

    Article  CAS  Google Scholar 

  25. John David Jackson. Classical electrodynamics, 1999.

    Google Scholar 

  26. Marek Piliarik and Vahid Sandoghdar. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nature communications, 5(1):1–8, 2014.

    Article  Google Scholar 

  27. Fea Vollmer, Daniela Braun, Albert Libchaber, Masoud Khoshsima, Iwao Teraoka, and Susan Arnold. Protein detection by optical shift of a resonant microcavity. Applied physics letters, 80(21):4057–4059, 2002.

    Article  CAS  Google Scholar 

  28. Eugene Kim, Martin D Baaske, Isabel Schuldes, Peter S Wilsch, and Frank Vollmer. Label-free optical detection of single enzyme-reactant reactions and associated conformational changes. Science advances, 3(3):e1603044, 2017.

    Google Scholar 

  29. Larnii S. Booth, Eloise V. Browne, Nicolas P. Mauranyapin, Lars S. Madsen, Shelley Barfoot, Alan Mark, and Warwick P. Bowen. Dynamic polarizability of macromolecules for single-molecule optical biosensing. arXiv, 2021.

    Google Scholar 

  30. Jon Applequist, James R Carl, and Kwok-Kueng Fung. Atom dipole interaction model for molecular polarizability. application to polyatomic molecules and determination of atom polarizabilities. Journal of the American Chemical Society, 94(9):2952–2960, 1972.

    Google Scholar 

  31. B Th Thole. Molecular polarizabilities calculated with a modified dipole interaction. Chemical Physics, 59(3):341–350, 1981.

    Google Scholar 

  32. Alexander Hahn, Janet Vonck, Deryck J Mills, Thomas Meier, and Werner Kühlbrandt. Structure, mechanism, and regulation of the chloroplast atp synthase. Science, 360(6389), 2018.

    Google Scholar 

  33. Utkur Mirsaidov, Winston Timp, Kaethe Timp, Mustafa Mir, Paul Matsudaira, and Gregory Timp. Optimal optical trap for bacterial viability. Physical Review E, 78(2):021910, 2008.

    Google Scholar 

  34. Yoshiyuki Sowa, Alexander D Rowe, Mark C Leake, Toshiharu Yakushi, Michio Homma, Akihiko Ishijima, and Richard M Berry. Direct observation of steps in rotation of the bacterial flagellar motor. Nature, 437(7060):916–919, 2005.

    Google Scholar 

  35. Markita P Landry, Patrick M McCall, Zhi Qi, and Yann R Chemla. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. Biophysical journal, 97(8):2128–2136, 2009.

    Google Scholar 

  36. Sina Wäldchen, Julian Lehmann, Teresa Klein, Sebastian Van De Linde, and Markus Sauer. Light-induced cell damage in live-cell super-resolution microscopy. Scientific reports, 5(1):1–12, 2015.

    Article  Google Scholar 

  37. Marina S Dietz, S Sophia Wehrheim, Marie-Lena IE Harwardt, Hartmut H Niemann, and Mike Heilemann. Competitive binding study revealing the influence of fluorophore labels on biomolecular interactions. Nano letters, 19(11):8245–8249, 2019.

    Google Scholar 

  38. Sofie Fogh Hedegaard, Mohammed Sobhi Derbas, Tania Kjellerup Lind, Marina Robertnova Kasimova, Malene Vinther Christensen, Maria Høtoft Michaelsen, Richard A Campbell, Lene Jorgensen, Henrik Franzyk, Marité Cárdenas, et al. Fluorophore labeling of a cell-penetrating peptide significantly alters the mode and degree of biomembrane interaction. Scientific reports, 8(1):1–14, 2018.

    Google Scholar 

  39. Ágnes Szabó, Tímea Szendi-Szatmári, László Ujlaky-Nagy, Ildikó Rádi, György Vereb, János Szöllősi, and Peter Nagy. The effect of fluorophore conjugation on antibody affinity and the photophysical properties of dyes. Biophysical journal, 114(3):688–700, 2018.

    Article  Google Scholar 

  40. Jutta Pauli, Marieke Pochstein, Andrea Haase, Joanna Napp, Andreas Luch, and Ute Resch-Genger. Influence of label and charge density on the association of the therapeutic monoclonal antibodies trastuzumab and cetuximab conjugated to anionic fluorophores. ChemBioChem, 18(1):101–110, 2017.

    Article  CAS  Google Scholar 

  41. Carolina Sanchez-Rico, Lena Voith von Voithenberg, Lisa Warner, Don C Lamb, and Michael Sattler. Effects of fluorophore attachment on protein conformation and dynamics studied by spfret and nmr. Chemistry (Weinheim an der Bergstrasse, Germany), 23(57):14267, 2017.

    Google Scholar 

  42. Kapil Dave, Hannah Gelman, Chu Thi Hien Thu, Drishti Guin, and Martin Gruebele. The effect of fluorescent protein tags on phosphoglycerate kinase stability is nonadditive. The Journal of Physical Chemistry B, 120(11):2878–2885, 2016.

    Article  CAS  Google Scholar 

  43. Linliang Yin, Wei Wang, Shaopeng Wang, Fenni Zhang, Shengtao Zhang, and Nongjian Tao. How does fluorescent labeling affect the binding kinetics of proteins with intact cells? Biosensors and Bioelectronics, 66:412–416, 2015.

    Article  CAS  Google Scholar 

  44. Amy E Larsen and David G Grier. Like-charge attractions in metastable colloidal crystallites. Nature, 385(6613):230–233, 1997.

    Google Scholar 

  45. Seongmin Park, Siyoung Q Choi, Chaeyeon Song, Mahn Won Kim, and Myung Chul Choi. Surface charge effects on optical trapping of nanometer-sized lipid vesicles. Soft matter, 10(42):8406–8412, 2014.

    Google Scholar 

  46. Kevin Namink, Xuanhui Meng, Marc TM Koper, Philipp Kukura, and Sanli Faez. Electric-double-layer-modulation microscopy. Physical Review Applied, 13(4):044065, 2020.

    Google Scholar 

  47. Matthew R Foreman, Jon D Swaim, and Frank Vollmer. Whispering gallery mode sensors. Advances in optics and photonics, 7(2):168–240, 2015.

    Google Scholar 

  48. Eugene Kim, Martin D Baaske, and Frank Vollmer. Towards next-generation label-free biosensors: recent advances in whispering gallery mode sensors. Lab on a Chip, 17(7):1190–1205, 2017.

    Google Scholar 

  49. Tobias J Kippenberg, AL Tchebotareva, J Kalkman, A Polman, and Kerry J Vahala. Purcell-factor-enhanced scattering from si nanocrystals in an optical microcavity. Physical review letters, 103(2):027406, 2009.

    Google Scholar 

  50. Michael Motsch, Martin Zeppenfeld, Pepijn WH Pinkse, and Gerhard Rempe. Cavity-enhanced rayleigh scattering. New Journal of Physics, 12(6):063022, 2010.

    Google Scholar 

  51. CC Harb, MB Gray, H-A Bachor, R Schilling, P Rottengatter, I Freitag, and H Welling. Suppression of the intensity noise in a diode-pumped neodymium: Yag nonplanar ring laser. IEEE journal of quantum electronics, 30(12):2907–2913, 1994.

    Article  CAS  Google Scholar 

  52. Michèle Heurs, Volker M Quetschke, Benno Willke, Karsten Danzmann, and Ingo Freitag. Simultaneously suppressing frequency and intensity noise in a nd: Yag nonplanar ring oscillator by means of the current-lock technique. Optics letters, 29(18):2148–2150, 2004.

    Google Scholar 

  53. B Daino, P Spano, M Tamburrini, and S Piazzolla. Phase noise and spectral line shape in semiconductor lasers. IEEE Journal of Quantum Electronics, 19(3):266–270, 1983.

    Article  Google Scholar 

  54. Aditya Kakkar, Jaime Rodrigo Navarro, Richard Schatz, Xiaodan Pang, Oskars Ozolins, Aleksejs Udalcovs, Hadrien Louchet, Sergei Popov, and Gunnar Jacobsen. Laser frequency noise in coherent optical systems: spectral regimes and impairments. Scientific reports, 7(1):1–10, 2017.

    Google Scholar 

  55. Tao Lu, Hansuek Lee, Tong Chen, Steven Herchak, Ji-Hun Kim, Scott E Fraser, Richard C Flagan, and Kerry Vahala. High sensitivity nanoparticle detection using optical microcavities. Proceedings of the National Academy of Sciences, 108(15):5976–5979, 2011.

    Google Scholar 

  56. Eric D Black. An introduction to pound–drever–hall laser frequency stabilization. American journal of physics, 69(1):79–87, 2001.

    Google Scholar 

  57. Jon D Swaim, Joachim Knittel, and Warwick P Bowen. Detection of nanoparticles with a frequency locked whispering gallery mode microresonator. Applied Physics Letters, 102(18):183106, 2013.

    Google Scholar 

  58. Daryl T Spencer, Michael L Davenport, Tin Komljenovic, Sudharsanan Srinivasan, and John E Bowers. Stabilization of heterogeneous silicon lasers using pound-drever-hall locking to si 3 n 4 ring resonators. Optics express, 24(12):13511–13517, 2016.

    Google Scholar 

  59. Gavin Young and Philipp Kukura. Interferometric scattering microscopy. Annual review of physical chemistry, 70:301–322, 2019.

    Article  CAS  Google Scholar 

  60. Jiangang Zhu, Sahin Kaya Ozdemir, Yun-Feng Xiao, Lin Li, Lina He, Da-Ren Chen, and Lan Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator. Nature photonics, 4(1):46, 2010.

    Google Scholar 

  61. Jon D Swaim, Joachim Knittel, and Warwick P Bowen. Detection limits in whispering gallery biosensors with plasmonic enhancement. Applied Physics Letters, 99(24):243109, 2011.

    Google Scholar 

  62. Andrea M Armani, Rajan P Kulkarni, Scott E Fraser, Richard C Flagan, and Kerry J Vahala. Label-free, single-molecule detection with optical microcavities. science, 317(5839):783–787, 2007.

    Google Scholar 

  63. F Vollmer, S Arnold, and D Keng. Single virus detection from the reactive shift of a whispering-gallery mode. Proceedings of the National Academy of Sciences, 105(52):20701–20704, 2008.

    Article  CAS  Google Scholar 

  64. Martin D Baaske, Matthew R Foreman, and Frank Vollmer. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nature nanotechnology, 9(11):933, 2014.

    Google Scholar 

  65. Lina He, Şahin Kaya Özdemir, Jiangang Zhu, Woosung Kim, and Lan Yang. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nature nanotechnology, 6(7):428–432, 2011.

    Google Scholar 

  66. Joachim Knittel, Terry G McRae, Kwan H Lee, and Warwick P Bowen. Interferometric detection of mode splitting for whispering gallery mode biosensors. Applied Physics Letters, 97(12):123704, 2010.

    Google Scholar 

  67. Joachim Knittel, Jon D Swaim, David L McAuslan, George A Brawley, and Warwick P Bowen. Back-scatter based whispering gallery mode sensing. Scientific reports, 3(1):1–5, 2013.

    Google Scholar 

  68. Weijian Chen, Şahin Kaya Özdemir, Guangming Zhao, Jan Wiersig, and Lan Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548(7666):192–196, 2017.

    Google Scholar 

  69. Hans-Albert Bachor, Timothy C Ralph, St Lucia, and Timothy C Ralph. A guide to experiments in quantum optics, volume 1. Wiley Online Library, 2004.

    Google Scholar 

  70. Michael A Taylor and Warwick P Bowen. Quantum metrology and its application in biology. Physics Reports, 615:1–59, 2016.

    Google Scholar 

  71. SF Pereira, Min Xiao, HJ Kimble, and JL Hall. Generation of squeezed light by intracavity frequency doubling. Physical review A, 38(9):4931, 1988.

    Google Scholar 

  72. Henning Vahlbruch, Moritz Mehmet, Karsten Danzmann, and Roman Schnabel. Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Physical review letters, 117(11):110801, 2016.

    Article  Google Scholar 

  73. Michael A Taylor, Jiri Janousek, Vincent Daria, Joachim Knittel, Boris Hage, Hans-A Bachor, and Warwick P Bowen. Biological measurement beyond the quantum limit. Nature Photonics, 7(3):229–233, 2013.

    Google Scholar 

  74. Michael A Taylor, Jiri Janousek, Vincent Daria, Joachim Knittel, Boris Hage, Hans-A Bachor, and Warwick P Bowen. Subdiffraction-limited quantum imaging within a living cell. Physical Review X, 4(1):011017, 2014.

    Google Scholar 

  75. Catxere A Casacio, Lars S Madsen, Alex Terrasson, Muhammad Waleed, Kai Barnscheidt, Boris Hage, Michael A Taylor, and Warwick P Bowen. Quantum correlations overcome the photodamage limits of light microscopy. arXiv preprint arXiv:2004.00178, 2020.

    Google Scholar 

  76. Henning Vahlbruch, Simon Chelkowski, Karsten Danzmann, and Roman Schnabel. Quantum engineering of squeezed states for quantum communication and metrology. New Journal of Physics, 9(10):371, 2007.

    Article  Google Scholar 

  77. Aaron M Goldfain, Rees F Garmann, Yan Jin, Yoav Lahini, and Vinothan N Manoharan. Dynamic measurements of the position, orientation, and dna content of individual unlabeled bacteriophages. The Journal of Physical Chemistry B, 120(26):6130–6138, 2016.

    Google Scholar 

  78. Joanna Andrecka, Jaime Ortega Arroyo, Yasuharu Takagi, Gabrielle de Wit, Adam Fineberg, Lachlan MacKinnon, Gavin Young, James R Sellers, and Philipp Kukura. Structural dynamics of myosin 5 during processive motion revealed by interferometric scattering microscopy. Elife, 4:e05413, 2015.

    Google Scholar 

  79. Kalkbrenner Lindfors, Thomas Kalkbrenner, Patrick Stoller, and Vahid Sandoghdar. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Physical review letters, 93(3):037401, 2004.

    Article  CAS  Google Scholar 

  80. Kristỳna Holanová, Milan Vala, and Marek Piliarik. Optical imaging and localization of prospective scattering labels smaller than a single protein. Optics & Laser Technology, 109:323–327, 2019.

    Article  Google Scholar 

  81. Ying-Hsiu Lin, Wei-Lin Chang, and Chia-Lung Hsieh. Shot-noise limited localization of single 20 nm gold particles with nanometer spatial precision within microseconds. Optics Express, 22(8):9159–9170, 2014.

    Article  CAS  Google Scholar 

  82. Mahdi Mazaheri, Jens Ehrig, Alexey Shkarin, Vasily Zaburdaev, and Vahid Sandoghdar. Ultrahigh-speed imaging of rotational diffusion on a lipid bilayer. Nano letters, 20(10):7213–7219, 2020.

    Article  CAS  Google Scholar 

  83. Nicolas P Mauranyapin, Lars S Madsen, Larnii Booth, Lu Peng, Stephen C Warren-Smith, Erik P Schartner, Heike Ebendorff-Heidepriem, and Warwick P Bowen. Quantum noise limited nanoparticle detection with exposed-core fiber. Optics express, 27(13):18601–18611, 2019.

    Google Scholar 

  84. Richard W Taylor and Vahid Sandoghdar. Interferometric scattering microscopy: seeing single nanoparticles and molecules via rayleigh scattering. Nano letters, 19(8):4827–4835, 2019.

    Google Scholar 

  85. Adar Sonn-Segev, Katarina Belacic, Tatyana Bodrug, Gavin Young, Ryan T VanderLinden, Brenda A Schulman, Johannes Schimpf, Thorsten Friedrich, Phat Vinh Dip, Thomas U Schwartz, et al. Quantifying the heterogeneity of macromolecular machines by mass photometry. Nature communications, 11(1):1–10, 2020.

    Google Scholar 

  86. Keith J Mickolajczyk, Elisabeth A Geyer, Tae Kim, Luke M Rice, and William O Hancock. Direct observation of individual tubulin dimers binding to growing microtubules. Proceedings of the National Academy of Sciences, 116(15):7314–7322, 2019.

    Google Scholar 

  87. Joanna Andrecka, Katelyn M Spillane, Jaime Ortega-Arroyo, and Philipp Kukura. Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy. ACS nano, 7(12):10662–10670, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas P. Mauranyapin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mauranyapin, N.P., Booth, L., Marinkovic, I., Bowen, W.P. (2022). Interferometric Biosensing. In: Bowen, W., Vollmer, F., Gordon, R. (eds) Single Molecule Sensing Beyond Fluorescence . Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-90339-8_1

Download citation

Publish with us

Policies and ethics