Skip to main content

Influence of Sow Gut Microbiota on Colostrum and Piglet Performance

  • Chapter
  • First Online:
Gut Microbiota, Immunity, and Health in Production Animals

Part of the book series: The Microbiomes of Humans, Animals, Plants, and the Environment ((MHAPE,volume 4))

Abstract

Colostrum being the sole source of immunoglobulin and energy plays an essential role for piglet survival and growth. Studies have shown that colostrum and milk intake also influence the gut development and maturation of piglets. The early life colonization and development of the gut microbiota primes the development of the adult microbiome and has long-term impact on the health of the pigs. Growing number of evidences suggest that certain microbial species can exert beneficial effect on the sow and piglets, and thus improve production performances like colostrum yield, colostrum quality, sow physiology around farrowing, piglet weight gain, and health during lactation and weaning. The gut microbiota of pig which is unique at suckling stage, largely acquired from the mother, shifts over time. Multiple factors like age, environment, production system, diet can influence the gut microbiota of sow and piglets. The improvement of the sow and piglets microbiota toward beneficial bacteria can also be done by probiotic, prebiotic, and different feed additive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Algers B, Uvnäs-Moberg K (2007) Maternal behavior in pigs. Horm Behav 52:78–85

    Article  CAS  PubMed  Google Scholar 

  • Baker AA, Davis E, Spencer JD, Moser R, Rehberger T (2013) The effect of a bacillus-based directed microbial supplemented to sows on the gastrointestinal microbiota of their neonatal piglets. J Anim Sci 91:3390–3399. https://doi.org/10.2527/jas.2012-5821

    Article  CAS  PubMed  Google Scholar 

  • Bian G, Ma S, Zhu Z, Su Y, Zoetendal EG, Mackie R, Lui J, Mu C, Huang R, Smidt H, Zhu W (2016) Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross-fostering model. Environ Microbiol 18:1566–1577

    Article  CAS  PubMed  Google Scholar 

  • Burkey TE, Dritz SS, Nietfeld JC, Johnson BJ, Minton JE (2004) Effect of dietary mannanoligosaccharide and sodium chlorate on the growth performance, acutephase response, and bacterial shedding of weaned pigs challenged with serotype typhimurium. J Anim Sci 82:397–404

    Article  CAS  PubMed  Google Scholar 

  • Cammarota G, Ianiro G, Gasbarrini A (2014) Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. J Clin Gastroenterol 48:693–702. https://doi.org/10.1097/MCG.0000000000000046

    Article  PubMed  Google Scholar 

  • Castillo M, Martin-Orue SM, Taylor-Pickard JA, Perez JF, Gasa J (2008) Use of mannan-oligosaccharides and zinc chelate as growth promoters and diarrhea preventative in weaning pigs: effects on microbiota and gut function1. J Anim Sci 86:94

    Article  CAS  PubMed  Google Scholar 

  • Chae JP, Pajarillo EA, Oh JK, Kim H, Kang DK (2016) Revealing the combined effects of lactulose and probiotic enterococci on the swine faecal microbiota using 454 pyrosequencing. Microb Biotechnol 9:486–495

    Google Scholar 

  • Chen W, Mi J, Lv N, Gao J, Cheng J, Wu R, Ma J, Lan T, Liao X (2018) Lactation stage-dependency of the sow milk microbiota. Front Microbiol 9:945. https://doi.org/10.3389/fmicb.2018.00945

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Xu J, Ren E, Su Y, Zhu W (2017) Co-occurrence of early gut colonization in neonatal piglets with microbiota in the maternal and surrounding delivery environments. Anaerobe 49:30–40. https://doi.org/10.1016/j.anaerobe.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Lan W, Liu G, Ni H, Gu J (2019) Exploring possible associations of the intestine bacterial microbiome with the pre-weaned weight gaining performance of piglets in intensive pig production. Sci Rep 9:15534. https://doi.org/10.1038/s41598-019-52045-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou S, Gadonna-Widehem P, Rome V, Hamoudi D, Rhazi L, Lakhal L, Larcher T, Bahi-Jaber N, Pinon-Quintana A, Guyonvarch A, Huërou-Luron IL, Abdennebi-Najar L (2017) Characterisation of early-life fecal microbiota in susceptible and healthy pigs to post-weaning diarrhoea. PLoS One 12:e0169851. https://doi.org/10.1371/journal.pone.0169851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microb 70:5810–5817

    Article  CAS  Google Scholar 

  • Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C (2016) The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front Microbiol 7:713

    Article  PubMed  PubMed Central  Google Scholar 

  • Everaert N, Van Cruchten S, Weström B, Bailey M, Van Ginneken C, Thymann T, Pieper R (2017) A review on early gut maturation and colonization in pigs, including biological and dietary factors affecting gut homeostasis. Anim Feed Sci Technol 233:89–103. https://doi.org/10.1016/j.anifeedsci.2017.06.011

    Article  Google Scholar 

  • Fan P, Liu P, Song P, Chen X, Ma X (2017) Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci Rep 7:43412. https://doi.org/10.1038/srep43412

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng ZM, Li TJ, Wu L, Xiao DF, Blachier F, Yin YL (2015) Monosodium L-glutamate and dietary fat differently modify the composition of the intestinal microbiota in growing pigs. Obes Facts 8:87–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouhse JM, Zijlstra RT, Willing BP (2016) The role of gut microbiota in the health and disease of pigs. Anim Front 6:30–36. https://doi.org/10.2527/af.2016-0031

    Article  Google Scholar 

  • Frese SA, Parker K, Calvert CC, Mills DA (2015) Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 3:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547

    Article  CAS  PubMed  Google Scholar 

  • Gaskins HR, Collier CT, Anderson DB (2002) Antibiotics as growth promotants: mode of action. Anim Biotechnol 3:29–42

    Article  CAS  Google Scholar 

  • Guevarra RB, Lee JH, Lee SH et al (2019) Piglet gut microbial shifts early in life: causes and effects. J Anim Sci Biotechnol 10:1. https://doi.org/10.1186/s40104-018-0308-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Han YW (2015) Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol 23:141–147. https://doi.org/10.1016/j.mib.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  • Hasan S, Junnikkala S, Peltoniemi O, Paulin L, Lyyski A, Vuorenmaa J, Oliviero C (2018) Dietary supplementation with yeast hydrolysate in pregnancy influences colostrum yield and gut microbiota of sows and piglets after birth. PLoS One 13:e0197586. https://doi.org/10.1371/journal.pone.0197586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan S, Peltoniemi O, Vuorenmaa J, Oliviero C (2019a) Use of antibiotics in early age can affect the gut microbiota composition and diversity in one-week age piglets. ESPHM Conference Abstract, 193

    Google Scholar 

  • Hasan S, Saha S, Junnikkala S, Orro T, Peltoniemi O, Oliviero C (2019b) Late gestation diet supplementation of resin acid-enriched composition increases sow colostrum immunoglobulin G content, piglet colostrum intake and improve sow gut microbiota. Animal 13:1599–1606

    Article  CAS  Google Scholar 

  • Hunt KM, Foster JA, Forney LJ, Schütte UM, Beck DL, Abdo Z, Fox LK, Williams JE, McGuire MK, McGuire MA (2011) Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One 6:e21313. https://doi.org/10.1371/journal.pone.0021313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley WL (2015) Composition of sow colostrum and milk. In: Farmer C (ed) The gestating and lactating sow. Wageningen Academic, Wageningen, pp 193–229

    Google Scholar 

  • Isaacson R, Kim HB (2012) The intestinal microbiome of the pig. Anim Health Res Rev 3:100–109

    Article  Google Scholar 

  • Ji YJ, Li H, Xie PF, Li ZH, Li HW, Yin YL, Blachier F, Kong XF (2019) Stages of pregnancy and weaning influence the gut microbiota diversity and function in sows. J Appl Microbiol 127:867–879. https://doi.org/10.1111/jam.14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jost T, Lacroix C, Braegger C, Chassard C (2013) Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr 110:1253–1262. https://doi.org/10.1017/S0007114513000597

    Article  CAS  PubMed  Google Scholar 

  • Jost T, Lacroix C, Braegger C, Chassard C (2014) Stability of the maternal gut microbiota during late pregnancy and early lactation. Curr Microbiol 68:419–427

    Article  CAS  PubMed  Google Scholar 

  • Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A, Weir TL, Ehrentraut SF, Pickel C, Kuhn KA, Lanis JM, Nguyen V, Taylor CT, Colgan SP (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17:662–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettunen H, Eerden E, Lipiński K, Rinttilä T, Valkonen E, Vuorenmaa J (2017) Dietary resin acid composition as a performance enhancer for broiler chickens. J Appl Anim Nutr 5:e3

    Article  Google Scholar 

  • Kim HB, Isaacson RE (2015) The pig gut microbial diversity: understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet Microbiol 177:242–251

    Article  CAS  PubMed  Google Scholar 

  • Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE (2011) Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet Microbiol 153:124–133

    Article  PubMed  Google Scholar 

  • Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE (2012) Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proc Natl Acad Sci U S A 109:15485–15490. https://doi.org/10.1073/pnas.1205147109

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubasova T, Davidova-Gerzova L, Merlot E, Medvecky M, Polansky MO, Gardan-Salmon D, Quesnel H, Rychlik I (2017) Housing systems influence gut microbiota composition of sows but not of their piglets. PLoS One 12:e0170051. https://doi.org/10.1371/journal.pone.0170051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mach N, Berri M, Estellé J, Levenez F, Lemonnier G, Denis C, Leplat JJ, Chevaleyre C, Billon Y, Doré J, Rogel-Gaillard C, Lepage P (2015) Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ Microbiol Rep 7:554–569. https://doi.org/10.1111/1758-2229.12285

    Article  CAS  PubMed  Google Scholar 

  • Lallès JP, Bosi P, Janczyk P, Koopmans SJ, Torrallardona D (2009) Impact of bioactive substances on the gastrointestinal tract and performance of weaned piglets: a review. Animal 12:1625–1643

    Article  CAS  Google Scholar 

  • Le Dividich J, Rooke JA, Herpin P (2005) Nutritional and immunological importance of colostrum for the new-born pig. J Agric Sci 143:469–485

    Article  CAS  Google Scholar 

  • Li H, Liu Z, Lyu H, Gu X, Song Z, He X, Fan Z (2020) Effects of dietary inulin during late gestation on sow physiology, farrowing duration and piglet performance. Anim Reprod Sci 219:106531

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Piao XS, Kim SW, Wang L, Shen YB, Lee HS, Li SY (2008) Effects of chito-oligosaccharide supplementation on the growth performance, nutrient digestibility, intestinal morphology, and fecal shedding of and in weaning pigs. J Anim Sci 86:2609–2618

    Article  CAS  PubMed  Google Scholar 

  • Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B, Cole JR, Hashsham SA, Tiedje JM, Stanton TB (2012) In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci 109:1691–1696. https://doi.org/10.1073/pnas.1120238109

    Article  PubMed  PubMed Central  Google Scholar 

  • Loubinoux J, Bronowicki J, Pereira IA, Mougenel J, Le Faou AE (2002) Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol Ecol 40:107–112. https://doi.org/10.1111/j.1574-6941.2002.tb00942.x

    Article  CAS  PubMed  Google Scholar 

  • McCormack UM, Curião T, Buzoianu SG, Prieto ML, Ryan T, Varley P, Crispie F, Magowan E, Metzler-Zebeli BU, Berry D, O’Sullivan O, Cotter PD, Gardiner GE, Lawlor PG (2017) Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl Environ Microbiol 83:e00380–e00317. https://doi.org/10.1128/AEM.00380-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menegat MB, JM DR, Woodworth JC, Dritz SS, Tokach MD, Goodband RD (2019) Effects of Bacillus subtilis C-3102 on sow and progeny performance, fecal consistency, and fecal microbes during gestation, lactation, and nursery periods. J Anim Sci 97:3920–3937. https://doi.org/10.1093/jas/skz236

    Article  PubMed  PubMed Central  Google Scholar 

  • Morissette B, Talbot G, Beaulieu C, Lessard M (2018) Growth performance of piglets during the first two weeks of lactation affects the development of the intestinal microbiota. J Anim Physiol Anim Nutr 102:525–532. https://doi.org/10.1111/jpn.12784

    Article  CAS  Google Scholar 

  • Mosnier E, Le Floc’h N, Etienne M, Ramaekers P, Seve B, Pere MC (2010) Reduced feed intake of lactating primiparous sows is associated with increased insulin resistance during the peripartum period and is not modified through supplementation with dietary tryptophan. J Anim Sci 88:612–625

    Article  CAS  PubMed  Google Scholar 

  • Niu Q, Li P, Hao S, Kim SW, Du T, Hua J, Huang R (2019) Characteristics of gut microbiota in sows and their relationship with apparent nutrient digestibility. Int J Mol Sci 20:870

    Article  CAS  PubMed Central  Google Scholar 

  • Pajarillo EA, Chae J, Balolong MP, Kim HB, Kang D (2014a) Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J Gen Appl Microbiol 60:140–146

    Article  CAS  Google Scholar 

  • Pajarillo EA, Chae JP, Balolong MP, Bum Kim H, Kang DK (2014b) Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J Gen Appl Microbiol 60:140–146

    Article  CAS  Google Scholar 

  • Pajarillo EA, Chae JP, Balolong MP, Kim HB, Seo KS, Kang DK (2014c) Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J Microbiol 52:646–651

    Article  PubMed  Google Scholar 

  • Petri D, Hill JE, Van Kessel AG (2010) Microbial succession in the gastrointestinal tract (GIT) of the preweaned pig. Livest Sci 1–3:107–109. https://doi.org/10.1016/j.livsci.2010.06.037

    Article  Google Scholar 

  • Pitcher MC, Cummings JH (1996) Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut 39:1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quesnel H, Farmer C, Devillers N (2012) Colostrum intake: influence on piglet performance and factors of variation. Livest Sci 146:105–114

    Article  Google Scholar 

  • Rhouma M, Fairbrother JM, Beaudry F, Letellier A (2017) Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta Vet Scand 59:31. https://doi.org/10.1186/s13028-017-0299-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riboulet-Bisson E, Sturme MH, Jeffery IB, O’Donnell MM, Neville BA, Forde BM, Claesson MJ, Harris H, Gardiner GE, Casey PG, Lawlor PG, O’Toole PW, Ross RP (2012) Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS One 7:e31113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez JM (2014) The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr 5(6):779–784. https://doi.org/10.3945/an.114.007229

    Article  PubMed  PubMed Central  Google Scholar 

  • Rooke JA, Bland IM (2002) The acquisition of passive immunity in the new-born piglet. Livest Prod Sci 78:13–23

    Article  Google Scholar 

  • Salmon H, Berri M, Gerdts V, Meurens F (2009) Humoral and cellular factors of maternal immunity in swine. Dev Comp Immunol 33:384–393. https://doi.org/10.1016/j.dci.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  • Sassone-Corsi M, Raffatellu M (2015) No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol 194:4081–4087

    Article  CAS  PubMed  Google Scholar 

  • Silva MLF, Lima JAF, Cantarelli VS, Amaral NO, Zangerônimo MG, Fialho ET (2010) Probiotics and antibiotics as additives for sows and piglets during nursery phase. Rev Bras Zootec 39:2453–2459. https://doi.org/10.1590/S1516-35982010001100019

    Article  Google Scholar 

  • Starke IC, Pieper R, Neumann K, Zentek KJ, Vahjen W (2013) Individual responses of mother sows to a probiotic enterococcus faecium strain lead to different microbiota composition in their offspring. Benef Microbes 4:345–356. https://doi.org/10.3920/BM2013.0021

    Article  CAS  PubMed  Google Scholar 

  • Stokes CR (2017) The development and role of microbial-host interactions in gut mucosal immune development. J Anim Sci Biotechnol 8:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan C, Wei H, Ao J, Long G, Peng J (2016) Inclusion of Konjac flour in the gestation diet changes the gut microbiota, alleviates oxidative stress, and improves insulin sensitivity in sows. Appl Environ Microbiol 82:5899–5909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson CL, Wang B, Holmes AJ (2008) The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J 2:739–748. https://doi.org/10.1093/jas/skz236

    Article  CAS  PubMed  Google Scholar 

  • Turfkruyer M, Verhasselt V (2015) Breast milk and its impact on maturation of the neonatal immune system. Curr Opin Infect Dis 28:199–206. https://doi.org/10.1097/QCO.0000000000000165

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484. https://doi.org/10.1038/nature07540

    Article  CAS  PubMed  Google Scholar 

  • Urbaniak C, Angelini M, Gloor GB, Reid G (2016) Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 4:1. https://doi.org/10.1186/s40168-015-0145-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallet J, Miles J, Rempel L (2013) A simple novel measure of passive transfer of maternal immunoglobulin is predictive of preweaning mortality in piglets. Vet J 195:91–97

    Article  CAS  PubMed  Google Scholar 

  • Vienola K, Jurgens G, Vuorenmaa J, Apajalahti J (2018) Tall oil fatty acid inclusion in the diet improves performance and increases ileal density of lactobacilli in broiler chickens. Br Poult Sci 59:349–355

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yongcheng J, Cong Y, Ming D, Tianyue T, Baichuan D, Wenkai R, Jinping D, Yulong Y, Chengqua T (2018) Differential analysis of gut microbiota correlated with oxidative stress in sows with high or low litter performance during lactation. Front Microbiol 9:1665. https://doi.org/10.3389/fmicb.2018.01665

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Hu C, Cheng C, Cui J, Ji Y, Hao X, Li Q, Ren W, Deng B, Yin Y, Deng J, Tan C (2019a) Unraveling the association of fecal microbiota and oxidative stress with stillbirth rate of sows. Theriogenology 136:131–137

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hu C, Cheng C, Cui J, Ji Y, Hao X, Li Q, Ren W, Deng B, Yin Y, Deng J, Tan C (2019b) Unraveling the association of fecal microbiota and oxidative stress with stillbirth rate of sows. Theriogenology 36:131–137

    Article  CAS  Google Scholar 

  • White LA, Newman MC, Cromwell GL, Lindemann MD (2002) Brewers dried yeast as a source of mannan oligosaccharides for weanling pigs. J Anim Sci 80:2619–2628

    CAS  PubMed  Google Scholar 

  • Xu C, Peng J, Zhang X, Peng J (2020) Inclusion of soluble fiber in the gestation diet changes the gut microbiota, affects plasma propionate and odd-chain fatty acids levels, and improves insulin sensitivity in sows. Int J Mol Sci 21:635

    Article  CAS  PubMed Central  Google Scholar 

  • Yang H, Huang X, Fang S, He M, Zhao Y, Wu Z et al (2017) Unraveling the fecal microbiota and metagenomic functional capacity associated with feed efficiency in pigs. Front Microbiol 8:1555

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Huang X, Wang P, Yan Z, Sun W, Zhao S, Gun S (2019) Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by age-related dietary changes. Microbiology 8:e923. https://doi.org/10.1002/mbo3.923

    Article  Google Scholar 

  • Zhang L, Mu C, He X, Su Y, Mao S, Zhang J, Smidt H, Zhu W (2016) Effects of dietary fibre source on microbiota composition in the large intestine of suckling piglets. FEMS Microbiol Lett 363:1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shah Hasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasan, S., Oliviero, C. (2022). Influence of Sow Gut Microbiota on Colostrum and Piglet Performance. In: Kogut, M.H., Zhang, G. (eds) Gut Microbiota, Immunity, and Health in Production Animals. The Microbiomes of Humans, Animals, Plants, and the Environment, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-90303-9_7

Download citation

Publish with us

Policies and ethics