Skip to main content

Predicting Interatomic Distances of Molecular Quantum Chemistry Calculations

  • Chapter
  • First Online:
Advances in Knowledge Discovery and Management

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1004))

  • 220 Accesses

Abstract

Geometry calculation of a molecule’s fundamental state is the starting point for the vast majority of molecular quantum chemistry researches. Few databases provide the results of these fundamental state calculations for large numbers of molecules. Our long term objective is to train machine learning models on such data to predict different kinds of molecules properties. Predicting the complete geometry would be a remarkable step forward. We first present results suggesting that it is difficult to train a neural network on this complex task. Then we demonstrate that a neural network can accurately predict the distance between atom pairs. The best results have been obtained by considering a neighborhood around each atom. This neighborhood depends on a cut-off distance and contains a limited number of atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With the B3LYP functional (approximation on the Hamiltonian operator), the 6-31G(d) basis set (approximation on the monoelectronics functions), all in closed shell and gas phase.

  2. 2.

    With the B3LYP functional, the 6-31G(2df,p) basis set, all in closed shell and gas phase.

References

  • Bartók, A. P., De, S., Poelking, C., Bernstein, N., Kermode, J. R., Csányi, G., & Ceriotti, M. (2017). Machine learning unifies the modeling of materials and molecules. Science Advances, 3(12), e1701816.

    Article  Google Scholar 

  • Faber, F. A., Hutchison, L., Huang, B., Gilmer, J., Schoenholz, S. S., Dahl, G. E., Vinyals, O., Kearnes, S., Riley, P. F., & von Lilienfeld, O. A. (2017). Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error. Journal of Chemical Theory and Computation, 13(11), 5255–5264.

    Article  Google Scholar 

  • Gubaev, K., Podryabinkin, E. V., & Shapeev, A. V. (2018). Machine learning of molecular properties: Locality and active learning. The Journal of Chemical Physics, 148(24), 241727.

    Article  Google Scholar 

  • Hy, T. S., Trivedi, S., Pan, H., Anderson, B. M., & Kondor, R. (2018). Predicting molecular properties with covariant compositional networks. The Journal of Chemical Physics, 148(24), 241745.

    Article  Google Scholar 

  • Muller, K., Mika, S., Ratsch, G., Tsuda, K., & Scholkopf, B. (2001). An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2), 181–201.

    Article  Google Scholar 

  • Musil, F., De, S., Yang, J., Campbell, J. E., Day, G. M., & Ceriotti, M. (2018). Machine learning for the structure-energy-property landscapes of molecular crystals. Chemical Science, 9(5), 1289–1300.

    Article  Google Scholar 

  • Nakata, M., & Shimazaki, T. (2017). PubChemQC Project: A Large-Scale First-Principles Electronic Structure Database for Data-Driven Chemistry. Journal of Chemical Information and Modeling, 57(6), 1300–1308.

    Article  Google Scholar 

  • Ramakrishnan, R., Dral, P. O., Rupp, M., & von Lilienfeld, O. A. (2014). Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1.

    Google Scholar 

  • Ruddigkeit, L., van Deursen, R., Blum, L. C., & Reymond, J.-L. (2012). Enumeration of 166 billion organic small molecules in the chemical universe database gdb-17. Journal of Chemical Information and Modeling, 52(11), 2864–2875. PMID: 23088335.

    Article  Google Scholar 

  • Schneider, G. (2018). Generative Models for Artificially-intelligent Molecular Design. Molecular Informatics, 37(1–2), 1880131.

    Article  Google Scholar 

  • Scholkopf, B., & Smola, A. J. (2001). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge: MIT Press.

    Google Scholar 

  • Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R., & Tkatchenko, A. (2017). Quantum-chemical insights from deep tensor neural networks. Nature Communications, 8, 13890.

    Article  Google Scholar 

  • Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A., & Müller, K.-R. (2018). SchNet - A deep learning architecture for molecules and materials. The Journal of Chemical Physics, 148(24), 241722.

    Article  Google Scholar 

  • Sinitskiy, A. V., & Pande, V. S. (2018). Deep Neural Network Computes Electron Densities and Energies of a Large Set of Organic Molecules Faster than Density Functional Theory (DFT). arXiv:1809.02723 [physics].

  • Tabor, D. P., Roch, L. M., Saikin, S. K., Kreisbeck, C., Sheberla, D., Montoya, J. H., Dwaraknath, S., Aykol, M., Ortiz, C., Tribukait, H., Amador-Bedolla, C., Brabec, C. J., Maruyama, B., Persson, K. A., & Aspuru-Guzik, A. (2018). Accelerating the discovery of materials for clean energy in the era of smart automation. Nature Reviews Materials, 3(5), 5–20.

    Article  Google Scholar 

  • Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., & Bryant, S. H. (2009). PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Research, 37, W623–W633.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by a starting grant of the Research Commission of the University of Angers (QuChemPedIA). The calculation resources were provided by the LERIA laboratory. The authors would also like to thanks Jean-Mathieu Chantrein for his technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Da Mota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leguy, J., Cauchy, T., Duval, B., Da Mota, B. (2022). Predicting Interatomic Distances of Molecular Quantum Chemistry Calculations. In: Jaziri, R., Martin, A., Rousset, MC., Boudjeloud-Assala, L., Guillet, F. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 1004. Springer, Cham. https://doi.org/10.1007/978-3-030-90287-2_8

Download citation

Publish with us

Policies and ethics