Skip to main content

Software Frameworks that Improve HCI Focused on Cognitive Cities. A Systematic Literature Review

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2021)

Abstract

Due to the technological advances, the reference frameworks to carry out web and mobile applications primarily focus on improving Human-Computer Interaction (HCI). This document compiles a series of current trends both in framework and in developing systems that enhance HCI in the new paradigm of cognitive cities. For this, a Systematics Literature Review (SLR) methodology has been applied, based on an exhaustive search in Scientific libraries of the Informatics field. This research presents new frameworks that improve HCI in medicine, education, and urban planning; based on the development of Cognitive Cities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lazar, J., Feng, J.H., Hochheiser, H.: Introduction to HCI research. In: Research Methods in Human Computer Interaction (2017)

    Google Scholar 

  2. Blandford, A.: HCI for health and wellbeing: challenges and opportunities. Int. J. Hum. Comput. Stud. 131, 41–51 (2019). https://doi.org/10.1016/j.ijhcs.2019.06.007

    Article  Google Scholar 

  3. Shneiderman, B.: Encounters with HCI pioneers: a personal history and photo journal. Synth. Lect. Human-Center. Inf. (2019). https://doi.org/10.2200/s00889ed1v01y201812hci041

    Article  Google Scholar 

  4. Gomes Guimaraes, T., Oliveira Prates, R.: HCI education in Brazil in the light of curricula guidelines. In: Proceedings - 2018 44th Latin American Computing Conference, CLEI 2018, Oct. 2018, pp. 784–793. https://doi.org/10.1109/CLEI.2018.00099

  5. Gaouar, L., Benamar, A., Le Goaer, O., Biennier, F.: HCIDL: human-computer interface description language for multi-target, multimodal, plastic user interfaces. Futur. Comput. Inf. J. (2018). https://doi.org/10.1016/j.fcij.2018.02.001

    Article  Google Scholar 

  6. Jeon, M., Fiebrink, R., Edmonds, E.A., Herath, D.: From rituals to magic: interactive art and HCI of the past, present, and future. Int. J. Hum. Comput. Stud. 131, 108–119 (2019). https://doi.org/10.1016/j.ijhcs.2019.06.005

    Article  Google Scholar 

  7. Edmonds, E.: The art of interaction: what HCI can learn from interactive art. Synth. Lect. Human-Center. Inf. 11(1), i–73 (2018). https://doi.org/10.2200/s00825ed1v01y201802hci039

    Article  Google Scholar 

  8. Rundo, L., Pirrone, R., Vitabile, S., Sala, E., Gambino, O.: Recent advances of HCI in decision-making tasks for optimized clinical workflows and precision medicine. J. Biomed. Inform. (2020). https://doi.org/10.1016/j.jbi.2020.103479

    Article  Google Scholar 

  9. Ding, I.J., Lin, Z.Y.: A service robot design with an advanced HCI scheme for the person with disabilities. In: Proceedings of the 2017 IEEE International Conference on Information, Communication and Engineering: Information and Innovation for Modern Technology, ICICE 2017, Oct 2018, pp. 531–534. https://doi.org/10.1109/ICICE.2017.8479297

  10. Zhang, Z., Russwinkel, N., Prezenski, S.: Modeling individual strategies in dynamic decision-making with ACT-R: a task toward decision-making assistance in HCI. Procedia Comp. Sci. 145, 668–674 (2018). https://doi.org/10.1016/j.procs.2018.11.064

    Article  Google Scholar 

  11. Rogers, Y.: HCI theory: classical, modern, and contemporary. Synth. Lect. Human-Center. Inf. 5(2), 1–129 (2012). https://doi.org/10.2200/s00418ed1v01y201205hci014

    Article  Google Scholar 

  12. Shneiderman, B.: Revisiting the astonishing growth of human–computer interaction research. Computer (Long. Beach. Calif.) 50(10), 8–11 (2017). https://doi.org/10.1109/MC.2017.3641625

    Article  Google Scholar 

  13. Toledo, G.T., Pimentel, J.J.A., Acevedo, F.A., Rodriguez, E.W.M.: Aprendizaje Basado en Proyectos Dentro de un Curso Universitario de Interacción Humano Computadora Learning Based on Projects Within a University Course of (2019). https://redib.org/Record/oai_articulo1770944-aprendizaje-basado-en-proyectos-dentro-de-un-curso-universitario-de-interacción-humano-computadora--learning-based-projects-within-a-university-course-human-computer-interaction. Accessed 30 Mar 2021

  14. Samaniego Larrea, M.J.: Estudio Comparativo de Productividad de Frameworks PHP Orientados a objetos para Desarrollar el Sistema de Siguimiento de Incidentes de la infraestructura de Red en la ESPOCH. Escuela Superior Politécnica de Chimborazo (2015)

    Google Scholar 

  15. Vilcaguano Zumba, M.I., Tierra Llamuca, J.M.: Análisis comparativo del rendimiento de los framework YII y CODEIGNITER. Caso práctico: Junta General de Usuarios de Riego Chambo - Guano (2015). http://dspace.espoch.edu.ec/handle/123456789/3777

  16. Jose, C.M., Alonso, M., Castiello, C.: “Linguistic Descriptions for Cognitive Cities: an Illustrative Use Case | Centro Singular de Investigación en Tecnoloxías Intelixentes - CiTIUS.” https://citius.usc.es/investigacion/publicacions/listado/linguistic-descriptions-cognitive-cities-illustrative-use-case. Accessed 30 Mar 2021

  17. Albino, V., Berardi, U., Dangelico, R.M.: Smart cities: definitions, dimensions, performance, and initiatives. J. Urban Technol. 22(1), 3–21 (2015). https://doi.org/10.1080/10630732.2014.942092

    Article  Google Scholar 

  18. Psaltoglou, A.: Archi-DOCT: La revista electrónica de investigación doctoral en arquitectura. http://www.archidoct.net/issue11.html. Accessed 30 Mar 2021

  19. Recalde, L., Meza, J., Terán, L.: Cognitive systems for urban planning: a literature review. In: Santos, H., Pereira, G.V., Budde, M., Lopes, S.F., Nikolic, P. (eds.) SmartCity 360 2019. LNICSSITE, vol. 323, pp. 249–270. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51005-3_22

    Chapter  Google Scholar 

  20. Ferreras Fernández, T.: Revisión sistemática de la literatura (SLR) y Mapping (2018). https://moodle2.usal.es/pluginfile.php/1167207/mod_resource/content/1/SLR_y_mapping_clase_presentacion.pdf

  21. Kong, X., Xiong, S., Zhu, Z., Zheng, S., Long, G.: Development of a conceptual framework for improving safety for pedestrians using smartphones while walking: challenges and research needs. Procedia Manuf. 3, 3636–3643 (2015). https://doi.org/10.1016/j.promfg.2015.07.749

    Article  Google Scholar 

  22. Gambino, O., Rundo, L., Cannella, V., Vitabile, S., Pirrone, R.: A framework for data-driven adaptive GUI generation based on DICOM. J. Biomed. Inform. 88, 37–52 (2018). https://doi.org/10.1016/j.jbi.2018.10.009

    Article  Google Scholar 

  23. Cecílio, J., Andrade, J., Martins, P., Castelo-Branco, M., Furtado, P.: BCI framework based on games to teach people with cognitive and motor limitations. Procedia Comp. Sci. 83, 74–81 (2016). https://doi.org/10.1016/j.procs.2016.04.101

    Article  Google Scholar 

  24. Volpentesta, A.P.: A framework for human interaction with mobiquitous services in a smart environment. Comput. Human Behav. 50, 177–185 (2015). https://doi.org/10.1016/j.chb.2015.04.003

    Article  Google Scholar 

  25. Bibri, S.E.: A foundational framework for smart sustainable city development: theoretical, disciplinary, and discursive dimensions and their synergies. Sustain. Cities Soc. 38, 758–794 (2018). https://doi.org/10.1016/j.scs.2017.12.032

    Article  Google Scholar 

  26. Langdon, P., Johnson, D., Huppert, F., Clarkson, P.J.: A framework for collecting inclusive design data for the UK population. Appl. Ergon. 46, 318–324 (2015). https://doi.org/10.1016/j.apergo.2013.03.011

    Article  Google Scholar 

  27. Li, F.: The digital transformation of business models in the creative industries: a holistic framework and emerging trends. Technovation 92–93, 102012 (2020). https://doi.org/10.1016/j.technovation.2017.12.004

    Article  Google Scholar 

  28. Llantos, O.E., Estuar, M.R.J.E.: My.Eskwela: designing an enterprise learning management system to increase social network and reduce cognitive load. Procedia Comp. Sci. 138, 595–602 (2018). https://doi.org/10.1016/j.procs.2018.10.080

    Article  Google Scholar 

  29. Young, G.W., Kitchin, R.: Creating design guidelines for building city dashboards from a user’s perspectives. Int. J. Hum. Comput. Stud. 140, 102429 (2020). https://doi.org/10.1016/j.ijhcs.2020.102429

    Article  Google Scholar 

  30. Huang, Y., White, C., Xia, H., Wang, Y.: A computational cognitive modeling approach to understand and design mobile crowdsourcing for campus safety reporting. Int. J. Hum. Comput. Stud. 102, 27–40 (2017). https://doi.org/10.1016/j.ijhcs.2016.11.003

    Article  Google Scholar 

  31. Righi, V., Sayago, S., Blat, J.: When we talk about older people in HCI, who are we talking about? Towards a ‘turn to community’ in the design of technologies for a growing ageing population. Int. J. Hum. Comput. Stud. 108, 15–31 (2017). https://doi.org/10.1016/j.ijhcs.2017.06.005

    Article  Google Scholar 

  32. Kitsantas, A., Baylor, A.L., Hiller, S.E.: Intelligent technologies to optimize performance: augmenting cognitive capacity and supporting self-regulation of critical thinking skills in decision-making. Cogn. Syst. Res. 58, 387–397 (2019). https://doi.org/10.1016/j.cogsys.2019.09.003

    Article  Google Scholar 

  33. Jotheeswaran, J., Singh, A., Pippal, S.: Hybrid video surveillance systems using P300 based computational cognitive threat signature library. Procedia Comp. Sci. 145, 512–519 (2018). https://doi.org/10.1016/j.procs.2018.11.115

    Article  Google Scholar 

  34. Mijović, P., et al.: Communicating the user state: introducing cognition-aware computing in industrial settings. Saf. Sci. 119, 375–384 (2019). https://doi.org/10.1016/j.ssci.2017.12.024

    Article  Google Scholar 

  35. Rapp, A., Cena, F., Castaldo, R., Keller, R., Tirassa, M.: Designing technology for spatial needs: routines, control and social competences of people with autism. Int. J. Hum. Comput. Stud. 120, 49–65 (2018). https://doi.org/10.1016/j.ijhcs.2018.07.005

    Article  Google Scholar 

  36. Chandiok, A., Chaturvedi, D.K.: CIT: Integrated cognitive computing and cognitive agent technologies based cognitive architecture for human-like functionality in artificial systems. Biol. Inspired Cogn. Archit. 26, 55–79 (2018). https://doi.org/10.1016/j.bica.2018.07.020

    Article  Google Scholar 

  37. Pecot, F., Merchant, A., Valette-Florence, P., De Barnier, V.: Cognitive outcomes of brand heritage: a signaling perspective. J. Bus. Res. 85, 304–316 (2018). https://doi.org/10.1016/j.jbusres.2018.01.016

    Article  Google Scholar 

  38. Lozoya-Santos, J.D.J., Sepúlveda-Arróniz, V., Tudon-Martinez, J.C., Ramirez-Mendoza, R.A.: Survey on biometry for cognitive automotive systems. Cogn. Syst. Res. 55, 175–191 (2019). https://doi.org/10.1016/j.cogsys.2019.01.007

    Article  Google Scholar 

  39. Nasir, A., Alyas, T., Asif, M., Akhtar, M.N.: Reliability management framework and recommender system for hyper-converged infrastructured data centers. In: 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies: Idea to Innovation for Building the Knowledge Economy, iCoMET 2020, Jan 2020, pp. 1–6. https://doi.org/10.1109/iCoMET48670.2020.9074136

  40. Yang, S., Guan, Y.: Audio–visual perception-based multimodal HCI. J. Eng. 2018(4), 190–198 (2018). https://doi.org/10.1049/joe.2017.0333

    Article  Google Scholar 

  41. Pathak, B., Jalal, A.S., Agrawal, S.C., Bhatnagar, C.: A framework for dynamic hand Gesture Recognition using key frames extraction. In: 2015 5th National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, NCVPRIPG 2015, Jun 2016, pp. 1–4. https://doi.org/10.1109/NCVPRIPG.2015.7490038.

  42. Yamamoto, Y., Arakawa, F., Fujii, A., Fukuma, S., Mori, S.I.: An multi-client web-based interactive HCI for interactive supercomputing. In: Proceedings - 20th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2019, Jul 2019, pp. 461–465. https://doi.org/10.1109/SNPD.2019.8935648

  43. Krasowski, N., Beier, T., Knott, G.W., Koethe, U., Hamprecht, F.A., Kreshuk, A.: Improving 3D em data segmentation by joint optimization over boundary evidence and biological priors. In: Proceedings - International Symposium on Biomedical Imaging, Jul 2015, vol. 2015–July, pp. 536–539. https://doi.org/10.1109/ISBI.2015.7163929

  44. Huang, W., Fang, F., Ma, X., Dong, Z., Xu, X.: Development of HCI management software for automatic medical analyzers. In: Proceedings of the 2015 10th IEEE Conference on Industrial Electronics and Applications, ICIEA 2015, Nov 2015, pp. 2030–2035. https://doi.org/10.1109/ICIEA.2015.7334447

  45. Shohieb, S.M., El-Rashidy, N.M.: A proposed effective framework for elderly with dementia using data mining. In: 2018 International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2018, Nov 2018, pp. 685–689. https://doi.org/10.1109/ISRITI.2018.8864331

  46. Nayak, S., Panda, S.K., Uttarkabat, S.: A Non-contact Framework based on Thermal and Visual Imaging for Classification of Affective States during HCI (2020). https://doi.org/10.1109/ICOEI48184.2020.9142883

  47. Montenegro, J.M.F., Argyriou, V.: Gaze estimation using EEG signals for HCI in augmented and virtual reality headsets. In: Proceedings - International Conference on Pattern Recognition, Jan 2016, pp. 1159–1164. https://doi.org/10.1109/ICPR.2016.7899793

  48. Ferguson, R., Crist, E., Moffatt, K.: A framework for negotiating ethics in sensitive settings: hospice as a case study: Table 1. Interact. Comput. 29(1), 10–26 (2017). https://doi.org/10.1093/iwc/iww018

    Article  Google Scholar 

  49. Heyer, C.: Designing for coping. Interact. Comput. 30(6), 492–506 (2018). https://doi.org/10.1093/iwc/iwy025

    Article  Google Scholar 

  50. Sucala, M., Ezeanochie, N.P., Cole-Lewis, H., Turgiss, J.: An iterative, interdisciplinary, collaborative framework for developing and evaluating digital behavior change interventions. Transl. Behav. Med. 10(6), 1538–1548 (2020). https://doi.org/10.1093/tbm/ibz109

    Article  Google Scholar 

  51. Kess Asikhia, O., Setchi, R., Hicks, Y., Walters, A.: Conceptual framework for evaluating intuitive interaction based on image schemas. Interact. Comput. 27(3), 287–310 (2015). https://doi.org/10.1093/iwc/iwu050

    Article  Google Scholar 

  52. Hespanhol, L., Tomitsch, M.: Strategies for intuitive interaction in public urban spaces. Interact. Comput. 27(3), 311–326 (2015). https://doi.org/10.1093/iwc/iwu051

    Article  Google Scholar 

  53. Dahl, Y., et al.: Stakeholder attitudes toward and values embedded in a sensor-enhanced personal emergency response system. Interact. Comput. 28(5), 598–611 (2016). https://doi.org/10.1093/iwc/iwv036

    Article  Google Scholar 

  54. Ince, I.F., Erdem, Y.S., Bulut, F., Sharif, M.H.: A low-cost pupil center localization algorithm based on maximized integral voting of circular Hollow Kernels. Comput. J. 59(3), 1001–1015 (2019). https://doi.org/10.1093/comjnl/bxy102

    Article  Google Scholar 

  55. Doush, I.A., Alshatnawi, S., Al-Tamimi, A.K., Alhasan, B., Hamasha, S.: ISAB: integrated indoor navigation system for the blind. Interact. Comput. 29(2), 181–202 (2017). https://doi.org/10.1093/iwc/iww016

    Article  Google Scholar 

  56. Abbas, S., Khan, M.A., Athar, A., Shan, S.A., Saeed, A., Alyas, T.: Enabling smart city with intelligent congestion control using hops with a hybrid computational approach. Comput. J. (2020). https://doi.org/10.1093/comjnl/bxaa068

    Article  Google Scholar 

  57. Lazar, J., et al.: Human-computer interaction and international public policymaking: a framework for understanding and taking future actions. Found. Trends Human-Comput. Interact. 9(2), 69–149 (2015). https://doi.org/10.1561/1100000062

    Article  Google Scholar 

  58. Kaptelinin, V.: Technology and the givens of existence: toward an existential inquiry framework in HCI research. In: Conference on Human Factors in Computing Systems - Proceedings, Apr 2018, vol. 2018–April. https://doi.org/10.1145/3173574.3173844

  59. Schneider, H., Eiband, M., Ullrich, D., Butz, A.: Empowerment in HCI - a survey and framework. In: Conference on Human Factors in Computing Systems - Proceedings, Apr. 2018, vol. 2018–April. https://doi.org/10.1145/3173574.3173818

  60. Mulder, I.: A pedagogical framework and a transdisciplinary design approach to innovate HCI education, pp. 68–70, 1377. Accessed 21 May 2021. [Online]. http://pure.tudelft.nl/ws/portalfiles/portal/5506483/A_pedagogical_framework.pdf

  61. McLaughlin, A.C., Matalenas, L.A., Coleman, M.G.: Design of human centered augmented reality for managing chronic health conditions. In: Aging, Technology and Health, pp. 261–296. Elsevier, Amsterdam (2018)

    Google Scholar 

  62. Gonçalves, T.G., Loslever, P., de Oliveira, K.M., Kolski, C.: Investigating agreement among HCI researchers about human-computer interaction in CMMI-DEV model: a case study. Interact. Comput. 32(1), 81–100 (2020). https://doi.org/10.1093/iwc/iwaa006

    Article  Google Scholar 

  63. Vaca-Cardenas, L., Avila-Pesantez, D., Vaca-Cardenas, M., Meza, J.: Trends and challenges of HCI in the new paradigm of cognitive cities (2020). https://doi.org/10.1109/ICEDEG48599.2020.9096845

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Vaca-Cardenas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giler-Velásquez, G., Marcillo-Delgado, B., Vaca-Cardenas, M., Vaca-Cardenas, L. (2021). Software Frameworks that Improve HCI Focused on Cognitive Cities. A Systematic Literature Review. In: Guarda, T., Portela, F., Santos, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2021. Communications in Computer and Information Science, vol 1485. Springer, Cham. https://doi.org/10.1007/978-3-030-90241-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90241-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90240-7

  • Online ISBN: 978-3-030-90241-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics