Skip to main content

Architecture of RNA

  • Chapter
  • First Online:
Fundamentals of RNA Structure and Function

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 1034 Accesses

Abstract

A single strand of RNA folds upon itself to form its many structures. The helices and loop regions formed in the secondary structures interact with each other to form a more compact tertiary structure. The charges of the phosphate backbone are neutralized by the potassium and magnesium ions to allow folding of this negatively charged polymer. In this chapter, we will learn the vocabulary of secondary and tertiary structural features in RNA and discuss the roles of magnesium ions. RNA structures are modular and are likely to be made of patterns of structures that repeat. We will discuss examples of some RNA motifs, the repeating structural units, that are known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woese CR, Magrum LJ, Sigel RB, et al. Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res. 1980; 8:2275 –94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Massire C, Jaeger L, Westhof E. Phylogenetic evidence for a new tertiary interaction in bacterial RNase P RNAs. RNA. 1997; 3:553 –6.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mathews DH, Sabina J, Zuker M, Turner DH. Expanded se-quence dependence of thermodynamic parameters improves pre- diction of RNA secondary structure. J Mol Biol. 1999; 288:911 –40.

    Article  CAS  PubMed  Google Scholar 

  4. Butcher SE, Pyle AM. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc Chem Res. 2011; 44:1302 –11.

    Article  CAS  PubMed  Google Scholar 

  5. Mustoe AM, Brooks CL, Al-Hashimi HM. Hierarchy of RNA functional dynamics. Annu Rev Biochem. 2014; 83:441 –66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maris C, Dominguez C, Allain FH. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 2005; 272:2118 –31.

    Article  CAS  PubMed  Google Scholar 

  7. Batey RT, Rambo RP, Doudna JA. Tertiary motifs in RNA structure and folding. Angew Chem Int Ed. 1999; 38:2326 –43.

    Article  CAS  Google Scholar 

  8. Strom S, Shiskova E, Hahm Y, Grover N. Thermodynamic examination of 1- to 5-nt purine bulge loops in RNA and DNA constructs. RNA. 2015; 21:1313 –22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rich A. The double helix: a tale of two puckers. Nat Struct Biol. 2003; 10:247 –9.

    Article  CAS  PubMed  Google Scholar 

  10. Maddox B, Franklin R. Dark lady of DNA. New York: Harper Collins Publishers; 2003.

    Google Scholar 

  11. Hendrix D, Brenner S, Holbrook S. RNA structural motifs: building blocks of a modular biomolecule. Q Rev Biophys. 2005; 38:221 –43.

    Article  CAS  PubMed  Google Scholar 

  12. Moore P. Structural motifs in RNA. Annu Rev Biochem. 1999; 68:287 –300.

    Article  CAS  PubMed  Google Scholar 

  13. Leontis N, Westhof E. Analysis of RNA motifs. Curr Opin Struct Biol. 2003; 13:300 –8.

    Article  CAS  PubMed  Google Scholar 

  14. Boerneke MA, Ehrhardt JE, Weeks KM. Physical and functional analysis of viral RNA genomes by SHAPE. Annu Rev Virol. 2019; 29:93 –117.

    Article  CAS  Google Scholar 

  15. Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, Assmann SM. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature. 2014; 505:696 –700.

    Article  CAS  PubMed  Google Scholar 

  16. Draper DE. RNA folding: thermodynamic and molecular descriptions of the roles of ions. Biophys J. 2008; 95:5489 –95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pyle AM. Metal ions in the structure and function of RNA. J Biol Inorg Chem. 2002; 7:679 –90.

    Article  CAS  PubMed  Google Scholar 

  18. Record MT, Lohman TM, Haseth PD. Ion effects on ligand nucleic acid interactions. J Mol Biol. 1976; 107:145 –58.

    Article  CAS  PubMed  Google Scholar 

  19. Jucker FM, Pardi A. GNRA tetraloops make a U-turn. RNA. 1995; 1:219 –22.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. D’Ascenzo L, Leonarski F, Vicens Q, Auffinger P. Revisiting GNRA and UNCG folds: U-turns versus Z-turns in RNA hairpin loops. RNA. 2017; 23:259 –69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dibrov S, Johnston-Cox H, Weng YH, Hermann T. Functional architecture of HCV IRES domain II stabilized by divalent metal ions in the crystal and in solution. Angew Chem Int Ed. 2007; 46:226 –9.

    Article  CAS  Google Scholar 

  22. Svoboda P, Di Cara A. Hairpin RNA: a secondary structure of primary importance. Cell Mol Life Sci. 2006; 63:901 –8.

    Article  CAS  PubMed  Google Scholar 

  23. Hermann T, Patel DJ. RNA bulges as architectural and recognition motifs. Structure. 2000;8:R47–54.

    Article  CAS  PubMed  Google Scholar 

  24. Schroeder K, Mcphee S, Ouellet J, Lilley D. A structural database for k-turn motifs in RNA. RNA. 2010; 16:1463 –8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Olejniczak M, Gdaniec Z, Fischer A, Grabarkiewicz T, Bielecki L, Adamiak RW. The bulge region of HIV-1 TAR RNA binds metal ions in solution. Nucleic Acids Res. 2002; 30:4241 –9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Correll CC, Freeborn B, Moore PB, Steitz TA. Metal, motifs, and recognition in the crystal structure of the 5S rRNA domain. Cell. 1997; 91:705 –12.

    Article  CAS  PubMed  Google Scholar 

  27. O'Connell AA, Hanson JA, McCaskill DC, Moore ET, Lewis DC, Grover N. Thermodynamic examination of pH and magnesium effect on U6 RNA internal loop. RNA. 2019; 25:1779 –92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McManus CJ, Schwartz ML, Butcher SE, Brow DA. A dynamic bulge in the U6 RNA internal stem-loop functions in spliceosome assembly and activation. RNA. 2007; 13:2252 –65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lescoute A, Westhof E. Topology of three-way junctions in folded RNAs. RNA. 2006; 12:83 –93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lilley DM. Folding of branched RNA species. Biopolymers. 1998; 48:101 –12.

    Article  CAS  PubMed  Google Scholar 

  31. Lescoute A, Westhof E. The interaction networks of structured RNAs. Nucleic Acids Res. 2006; 34:6587 –604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Almakarem AS, Petrov AI, Stombaugh J, Zirbel CL, Leontis NB. Comprehensive survey and geometric classification of base triples in RNA structures. Nucleic Acids Res. 2012; 40:1407 –23.

    Article  PubMed  CAS  Google Scholar 

  33. Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci. 2001; 98:4899 –903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shalybkova AA, Mikhailova DS, Kulakovskiy IV, Fakhranurova LI, Baulin EF. Annotation of the local context of the RNA secondary structure improves the classification and prediction of A-minors. RNA. 2021; 27:907 –19.

    Article  CAS  Google Scholar 

  35. Tamura M, Holbrook SR. Sequence and structural conservation in RNA ribose zippers. J Mol Biol. 2002; 320:455 –74.

    Article  CAS  PubMed  Google Scholar 

  36. Egli M, Minasov G, Su L, Rich A. Metal ions and flexibility in a viral RNA pseudoknot at atomic resolution. Proc Natl Acad Sci U S A. 2002; 99:4302 –7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang KY, Tinoco I Jr. The structure of an RNA “kissing” hairpin complex of the HIV TAR hairpin loop and its complement. J Mol Biol. 1997; 269:52 –66.

    Article  CAS  PubMed  Google Scholar 

  38. Correll CC, Wool IG, Munishkin A. The two faces of Esherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 Å resolution. J Mol Biol. 1999; 292:275 –87.

    Article  CAS  PubMed  Google Scholar 

  39. Leontis NB, Westhof E. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. RNA. 1998; 4:1134 –53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Szewczak AA, Moore PB, Chang YL, Wool IG. The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc Natl Acad Sci U S A. 1993; 90:9581 –5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Szewczak AA, Moore PB. The sarcin/ricin loop, a modular RNA. J Mol Biol. 1995; 247:81 –98.

    Article  CAS  PubMed  Google Scholar 

  42. Shi X, Khade PK, Sanbonmatsu KY, Joseph S. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis. J Mol Biol. 2012; 419:125 –38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang L, Liao X, Li M, Wang J, Peng X, Wilson T, Lilley DMJ. Structure and folding of four putative kink turns identified in structured RNA species in a test of structural prediction rules. Nucleic Acids Res. 2021; 49:5916 –24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Auffinger P, Grover N, Westhof E. Metal ion binding to RNA. Met Ions Life Sci. 2011; 9:1 –35.

    CAS  PubMed  Google Scholar 

  45. Bowman JC, Lenz TK, Hud NV, Williams LD. Cations in charge: magnesium ions in RNA folding and catalysis. Curr Opin Struct Biol. 2012; 22:262 –72.

    Article  CAS  PubMed  Google Scholar 

  46. Fedor MJ. The role of metal ions in RNA catalysis. Curr Opin Struct Biol. 2003;12(4):555–6.

    Article  Google Scholar 

  47. Klein DJ, Moore PB, Steitz TA. The contribution of metal ions to the structural stability of the large ribosomal subunit. RNA. 2004; 10:1366 –79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Woodson SA. Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr Opin Chem Biol. 2005; 9:104 –9.

    Article  CAS  PubMed  Google Scholar 

  49. Zheng H, Cooper DR, Porebski PJ, Shabalin IV, Handing KB, Minor W. CheckMyMetal: A macromolecular metal-binding validation tool. Acta Crystallogr D Struct Biol. 2017;73(Pt 3):223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grover N. On using magnesium and potassium ions in RNA experiments. Methods Mol Biol. 2015; 1206:157 –63.

    Article  CAS  PubMed  Google Scholar 

  51. Robinson H, Gao YG, Sanishvili R, Joachimiak A, Wang AH. Hexahydrated magnesium ions bind in the deep major groove and at the outer mouth of A-form nucleic acid duplexes. Nucleic Acids Res. 2000;28(8):1760–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leonarski F, D’Ascenzo L, Auffinger P. Nucleobase carbonyl groups are poor Mg2+ inner-sphere binders but excellent monovalent ion binders – a critical PDB survey. RNA. 2019; 25:173 –92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chin K, Sharp KA, Honig B, Pyle AM. Calculating the electrostatic properties of RNA provides new insights into molecular interactions and function. Nature. 1999; 6:1055 –61.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neena Grover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hintz, H., Moore, E., McCaskill, D., Grover, N. (2022). Architecture of RNA. In: Grover, N. (eds) Fundamentals of RNA Structure and Function. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-90214-8_2

Download citation

Publish with us

Policies and ethics