Skip to main content

Image Fine-Grained for Non-uniform Scenes Deblurring

  • Conference paper
  • First Online:
Artificial Intelligence for Communications and Networks (AICON 2021)

Abstract

Recently, image deblurring has been made advanced progress by various priors and networks. However, it still has room for promoting the image quality of deblurred images, such as details and visual effects of latent images. Therefore, we present an image deblurring method for non-uniform scene deblurring based on image fine-grained strategy. Specifically, we develop building blocks of multi-path fusion blocks (MPFB) and enhancement scale attention modules (ESAM) to recover the fine-grained features of the deblurred image as much as possible. Moreover, we propose multiple loss functions to optimize network training and promote convergence. To demonstrate the effectiveness of the proposed method, subjective and objective comparison experiments are conducted on different datasets. Our method surpasses state-of-the-art (SOTA) methods on synthetic datasets and real images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 145 (2009)

    Google Scholar 

  2. Xu, L., Zheng, S., Jia, J.: Unnatural L0 sparse representation for natural image deblurring. In: CVPR, pp. 1107–1114 (2013)

    Google Scholar 

  3. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. In: CVPR, pp. 1628–1636 (2016)

    Google Scholar 

  4. Mustaniemi, J., Kannala, J., Sarkka, S., et al.: Gyroscope-aided motion deblurring with deep networks. arXiv: Computer Vision and Pattern Recognition (2018).

    Google Scholar 

  5. Hyun Kim, T., Ahn, B., Mu Lee, K.: Dynamic scene deblurring. In: CVPR, pp. 3160–3167 (2013)

    Google Scholar 

  6. Hyun Kim, T., Mu Lee, K.: Segmentation-free dynamic scene deblurring. In: CVPR, pp. 2766–2773 (2014)

    Google Scholar 

  7. Pan, J., Hu, Z., Su, Z., Lee, H.Y., Yang, M.H.: Soft-segmentation guided object motion deblurring. In: CVPR, pp. 459–468 (2016)

    Google Scholar 

  8. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: CVPR, pp. 257–265 (2017)

    Google Scholar 

  9. Hradiš, M., Kotera, J., Zemcí, P., Sroubek, F.: Convolutional neural networks for direct text deblurring. In: BMVC (2015)

    Google Scholar 

  10. Gao, H., Tao, X., Shen, X., et al.: Dynamic scene deblurring with parameter selective sharing and nested skip connections. In: CVPR, pp. 3848–3856. IEEE Computer Society, Long Beach (2019)

    Google Scholar 

  11. Jin, M., Hirsch, M., Favaro, P.: Learning face deblurring fast and wide. In: CVPR Workshops, pp. 745–753 (2018)

    Google Scholar 

  12. Zhang, H., Yang, J., Zhang, Y., Huang, T.S.: Sparse representation based blind image deblurring. In: ICME, pp. 1–6 (2011)

    Google Scholar 

  13. Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur kernel estimation using patch priors. In: ICCP, pp. 1–8 (2013)

    Google Scholar 

  14. Ren, W., Cao, X., Pan, J., Guo, X., Zuo, W., Yang, M.H.: Image deblurring via enhanced low-rank prior. TIP 25, 3426–3437 (2016)

    Google Scholar 

  15. Chakrabarti, A.: A neural approach to blind motion deblurring. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 221–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_14

    Chapter  Google Scholar 

  16. Schuler, C.J., Hirsch, M., Harmeling, S., Schölkopf, B.: Learning to deblur. TPAMI 38, 1439–1451 (2016)

    Google Scholar 

  17. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: CVPR, pp. 8183–8192 (2018)

    Google Scholar 

  18. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.Y.: DeblurGAN-v2: deblurring (ordersof-magnitude) faster and better. In: ICCV, pp. 8878–8887 (2019)

    Google Scholar 

  19. Zhang, J., Pan, J., Ren, J., et al.: Dynamic scene deblurring using spatially variant recurrent neural networks. In: CVPR, pp. 2521–2529. IEEE Computer Society, Salt Lake City (2018)

    Google Scholar 

  20. Gong, D., Yang, J., Liu, L., Zhang, Y., et al.: From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. In: CVPR, pp. 3806–3815 (2017)

    Google Scholar 

  21. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: CVPR, pp. 8174C-8182 (2018)

    Google Scholar 

  22. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  23. Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S.: Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 27–40. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_3

    Chapter  Google Scholar 

  24. Lai, W.S., Huang, J.B., Hu, Z., Ahuja, N., Yang, M.H.: A comparative study for single image blind deblurring. In CVPR, pp. 1701–1709 (2016)

    Google Scholar 

  25. Madam, N.T., Kumar, S., Rajagopalan, A.N.: Unsupervised class-specific deblurring. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 358–374. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_22

    Chapter  Google Scholar 

  26. Lee, Y., Hwang, J., Lee, S., et al.: An energy and GPU-computation efficient backbone network for real-time object detection. In CVPR (2019)

    Google Scholar 

  27. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: CVPR, pp. 769–777 (2015)

    Google Scholar 

  28. Simonyan, K., Zisserman, A.: A very deep convolutional networks for large-scale image recognition. ArXiv, arXiv:1409.1556 (2014)

  29. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML, p. 3 (2013)

    Google Scholar 

  30. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_12

    Chapter  Google Scholar 

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ArXiv, arXiv:1412.6980 (2014)

  32. Gulrajani, I., Ahmed, F., Arjovsky, M., et al.: Improved training of Wasserstein GANs. ArXiv, arXiv:1704.00028 (2017)

  33. Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: NIPS, pp. 2802–2810 (2016)

    Google Scholar 

  34. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  35. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)

    Google Scholar 

  36. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)

    Google Scholar 

  37. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP 13, 600–612 (2004)

    Google Scholar 

  38. Li, C., Cong, R., Hou, J., Zhang, S., Qian, Y., Kwong, S.: Nested network with twostream pyramid for salient object detection in optical remote sensing images. arXiv preprint arXiv:1906.08462 (2019)

  39. Li, C., et al.: An underwater image enhancement benchmark dataset and beyond. arXiv preprint arXiv:1901.05495 (2019)

  40. Li, C., Guo, J., Guo, C.: Emerging from water: underwater image color correction based on weakly supervised color transfer. SPL 25, 323–327 (2018)

    Google Scholar 

  41. Li, C., Guo, C., Guo, J.C., Han, P., Fu, H.Z., Cong, R.: PDR-net: perception-inspired single image dehazing network with refinement. IEEE Trans. Multimedia 22, 704–716 (2020)

    Google Scholar 

  42. Li, C., Anwar, S., Porikli, F.: Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recogn. 98, 107038 (2020)

    Google Scholar 

  43. Li, C., Guo, C., Guo, J., Han, P., Fu, H., Cong, R.: Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans. Image Process. 25(12), 5664–5677 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qi, Q. (2021). Image Fine-Grained for Non-uniform Scenes Deblurring. In: Wang, X., Wong, KK., Chen, S., Liu, M. (eds) Artificial Intelligence for Communications and Networks. AICON 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 397. Springer, Cham. https://doi.org/10.1007/978-3-030-90199-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90199-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90198-1

  • Online ISBN: 978-3-030-90199-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics