Skip to main content

Mechanisms of Lymphomagenesis in Celiac Disease: Lessons for Therapy

  • Chapter
  • First Online:
Refractory Celiac Disease

Abstract

After summarizing historical studies which established lymphomas as one rare but most severe complication of celiac disease and demonstrated their origin from intraepithelial lymphocytes, we discuss how recent work has allowed to identify their precursor within an unusual subset of innate-like lymphocytes, to define their complex mutational landscape dominated by driver mutations in the JAK1-STAT3 pathway and thereby to propose a scenario through which chronic inflammation promotes lymphoma development with or without the intermediary step of intraepithelial lymphoma that defines type 2 refractory CeD (RCD2). We next examine how this pathogenic scheme might guide therapeutic approaches to prevent progression from RCD2 into overt high-grade enteropathy-associated lymphomas, and improve long term prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fairley NH, Mackie FP. Clinical and biochemical syndrome in lymphadenoma. BMJ. 1937;1:375–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gough KR, Read AE, Naish JM. Intestinal reticulosis as a complication of idiopathic steatorrhoea. Gut. 1962;3:232–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harris OD, Cooke WT, Thompson H, et al. Malignancy in adult coeliac disease and idiopathic steatorrhoea. Am J Med. 1967;42:899–912.

    Article  CAS  PubMed  Google Scholar 

  4. Holmes GK, Prior P, Lane MR, et al. Malignancy in coeliac disease--effect of a gluten free diet. Gut. 1989;30:333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Catassi C, Bearzi I, Holmes GKT. Association of celiac disease and intestinal lymphomas and other cancers. Gastroenterology. 2005;128:S79–86.

    Article  PubMed  Google Scholar 

  6. Isaacson P, Wright DH. Malignant histiocytosis of the intestine. Hum Pathol. 1978;9:661–77.

    Article  CAS  PubMed  Google Scholar 

  7. Isaacson PG, Spencer J, Connolly CE, et al. Malignant histiocytosis of the intestine: a t-cell lymphoma. Lancet. 1985;326:688–91.

    Article  Google Scholar 

  8. Salter DM, Krajewski AS, Dewar AE. Immunophenotype analysis of malignant histiocytosis of the intestine. J Clin Pathol. 1986;39:8–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O’Farrelly C, Feighery C, O’Briain DS, et al. Humoral response to wheat protein in patients with coeliac disease and enteropathy associated T cell lymphoma. BMJ. 1986;293:908–10.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferguson A, Murray D. Quantitation of intraepithelial lymphocytes in human jejunum. Gut. 1971;12:988–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spencer J, Cerf-Bensussan N, Jarry A, et al. Enteropathy-associated T cell lymphoma (malignant histiocytosis of the intestine) is recognized by a monoclonal antibody (HML-1) that defines a membrane molecule on human mucosal lymphocytes. Am J Pathol. 1988;132:1–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cerf-Bensussan N, Jarry A, Brousse N, et al. A monoclonal antibody (HML-1) defining a novel membrane molecule present on human intestinal lymphocytes. Eur J Immunol. 1987;17:1279–85.

    Article  CAS  PubMed  Google Scholar 

  14. Cerf-Bensussan N, Begue B, Gagnon J, et al. The human intraepithelial lymphocyte marker HML-1 is an integrin consisting of a beta 7 subunit associated with a distinctive alpha chain. Eur J Immunol. 1992;22:273–277 and 885.

    Article  CAS  PubMed  Google Scholar 

  15. Cecilie Alfsen G, Beiske K, Bell H, et al. Low-grade intestinal lymphoma of intraepithelial T lymphocyties with concomitant enteropathy-associated T cell lymphoma: case report suggesting a possible histogenetic relationship. Hum Pathol. 1989;20:909–13.

    Article  Google Scholar 

  16. Wright DH, Jones DB, Clark H, et al. Is adult-onset coeliac disease due to a low-grade lymphoma of intraepithelial T lymphocytes? Lancet. 1991;337:1373–4.

    Article  CAS  PubMed  Google Scholar 

  17. Carbonnel F, Grollet-Bioul L, Brouet JC, et al. Are complicated forms of celiac disease cryptic T-cell lymphomas? Blood. 1998;92:3879–86.

    Article  CAS  PubMed  Google Scholar 

  18. Bagdi E, Diss TC, Munson P, et al. Mucosal intra-epithelial lymphocytes in enteropathy-associated T-cell lymphoma, ulcerative jejunitis, and refractory celiac disease constitute a neoplastic population. Blood. 1999;94:260–4.

    Article  CAS  PubMed  Google Scholar 

  19. Cellier C, Patey N, Mauvieux L, et al. Abnormal intestinal intraepithelial lymphocytes in refractory sprue. Gastroenterology. 1998;114:471–81.

    Article  CAS  PubMed  Google Scholar 

  20. Cellier C, Delabesse E, Helmer C, et al. Refractory sprue, coeliac disease, and enteropathy-associated T-cell lymphoma. French coeliac disease study group [see comments]. Lancet. 2000;356:203–8.

    Article  CAS  PubMed  Google Scholar 

  21. Malamut G, Cording S, Cerf-Bensussan N. Recent advances in celiac disease and refractory celiac disease. F1000Res. 2019;8:969.

    Article  Google Scholar 

  22. Van de Kamer JH, Weijers HA, Dicke WK. Coeliac disease V. Some experiments on the cause of the harmful effect of wheat gliadin. Acta Paediatr Scand. 1953;42:223–31.

    Article  Google Scholar 

  23. Jabri B, Sollid LM. Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol. 2009;9:858–70.

    Article  CAS  PubMed  Google Scholar 

  24. Meresse B, Malamut G, Cerf-Bensussan N. Celiac disease: an immunological jigsaw. Immunity. 2012;36:907–19.

    Article  CAS  PubMed  Google Scholar 

  25. Mention J-J, Ahmed M Ben, Bègue B, et al. Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology. 2003;125:730–45.

    Article  CAS  PubMed  Google Scholar 

  26. Korneychuk N, Ramiro-Puig E, Ettersperger J, et al. Interleukin 15 and CD4(+) T cells cooperate to promote small intestinal enteropathy in response to dietary antigen. Gastroenterology. 2014;146:1017–27.

    Article  CAS  PubMed  Google Scholar 

  27. Abadie V, Kim SM, Lejeune T, et al. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature. 2020;578:600–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meresse B, Chen Z, Ciszewski C, et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity. 2004;21:357–66.

    Article  CAS  PubMed  Google Scholar 

  29. Hue S, Mention JJ, Monteiro RC, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity. 2004;21:367–77.

    Article  PubMed  Google Scholar 

  30. Meresse B, Curran SA, Ciszewski C, et al. Reprogramming of CTLs into natural killer-like cells in celiac disease. J Exp Med. 2006;203:1343–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wahab PJ, Meijer JWR, Mulder CJJ. Histologic follow-up of people with celiac disease on a gluten-free diet. Am J Clin Pathol. 2002;118:459–63.

    Article  PubMed  Google Scholar 

  32. Rowinski SA, Christensen E. Epidemiologic and therapeutic aspects of refractory coeliac disease - a systematic review. Dan Med J. 2016;63:A5307.

    PubMed  Google Scholar 

  33. Malamut G, Afchain P, Verkarre V, et al. Presentation and long-term follow-up of refractory celiac disease: comparison of type I with type II. Gastroenterology. 2009;136:81–90.

    Article  PubMed  Google Scholar 

  34. Rubio–Tapia A, Kelly DG, Lahr BD, et al. Clinical staging and survival in refractory celiac disease: a single center experience. Gastroenterology. 2009;136:99–107.

    Article  PubMed  Google Scholar 

  35. Malamut G, Chandesris O, Verkarre V, et al. Enteropathy associated T cell lymphoma in celiac disease: a large retrospective study. Dig Liver Dis. 2013;45:377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Verkarre V, Asnafi V, Lecomte T, et al. Refractory coeliac sprue is a diffuse gastrointestinal disease. Gut. 2003;52:205–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cording S, Lhermitte L, Malamut G, Berrabah S, Trinquand A, Guegan N, Villarese P, Kaltenbach S, Meresse B, Khater S, Dussiot M, Bras M, Cheminant M, Tesson B, Bole-Feysot C, Bruneau J, Molina TJ, Sibon D, Macintyre E, Hermine O, Cellier C, Asnafi V, Cerf-Bensussan N; CELAC Network. Oncogenetic landscape of lymphomagenesis in coeliac disease. Gut. 2021. doi: https://doi.org/10.1136/gutjnl-2020-322935. Online ahead of print. PMID: 33579790.

  38. Ettersperger J, Montcuquet N, Malamut G, et al. Interleukin-15-dependent T-cell-like innate intraepithelial lymphocytes develop in the intestine and transform into lymphomas in celiac disease. Immunity. 2016;45:610–25.

    Article  CAS  PubMed  Google Scholar 

  39. Tjon JM, Verbeek WH, Kooy-Winkelaar YM, et al. Defective synthesis or association of T-cell receptor chains underlies loss of surface T-cell receptor-CD3 expression in enteropathy-associated T-cell lymphoma. Blood. 2008;112:5103–10.

    Article  CAS  PubMed  Google Scholar 

  40. Jabri B, De Serre NPM, Cellier C, et al. Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology. 2000;118:867–79.

    Article  CAS  PubMed  Google Scholar 

  41. Mikulak J, Oriolo F, Bruni E, et al. NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. JCI Insight. 2019;4:e125884.

    Article  PubMed Central  Google Scholar 

  42. Mayassi T, Ladell K, Gudjonson H, et al. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. Cell. 2019;176:967–81.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheminant M, Bruneau J, Malamut G, et al. NKp46 is a diagnostic biomarker and may be a therapeutic target in gastrointestinal T-cell lymphoproliferative diseases: a CELAC study. Gut. 2019;68:1396–405.

    Article  CAS  PubMed  Google Scholar 

  44. Tjon JM-L, Kooy-Winkelaar YMC, Tack GJ, et al. DNAM-1 mediates epithelial cell-specific cytotoxicity of aberrant intraepithelial lymphocyte lines from refractory celiac disease type II patients. J Immunol. 2011;186:6304–12.

    Article  CAS  PubMed  Google Scholar 

  45. Jabri B, Meresse B, Lee L, et al. Activating CD94 receptors which reduce the activation threshold of intraepithelial lymphocytes (IEL) are upregulated in celiac disease. Gastroenterology. 2002;122:A15–6.

    Google Scholar 

  46. Jarry A, Cerf-Bensussan N, Brousse N, et al. Subsets of CD3+ (T cell receptor alpha/beta or gamma/delta) and CD3- lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur J Immunol. 1990;20:1097–103.

    Article  CAS  PubMed  Google Scholar 

  47. De Smedt M, Taghon T, Van de Walle I, et al. Notch signaling induces cytoplasmic CD3 epsilon expression in human differentiating NK cells. Blood. 2007;110:2696–703.

    Article  PubMed  CAS  Google Scholar 

  48. Guy-Grand D, Azogui O, Celli S, et al. Extrathymic T cell lymphopoiesis: ontogeny and contribution to gut intraepithelial lymphocytes in athymic and euthymic mice. J Exp Med. 2003;197:333–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lambolez F, Azogui O, Joret A-M, et al. Characterization of T cell differentiation in the murine gut. J Exp Med. 2002;195:437–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin T, Matsuzaki G, Kenai H, et al. Progenies of fetal thymocytes are the major source of CD4-CD8+ alpha alpha intestinal intraepithelial lymphocytes early in ontogeny. Eur J Immunol. 1994;24:1785–91.

    Article  CAS  PubMed  Google Scholar 

  51. Shimizu H, Okamoto R, Ito G, et al. Distinct expression patterns of notch ligands, Dll1 and Dll4, in normal and inflamed mice intestine. PeerJ. 2014;2:e370.

    Article  PubMed  PubMed Central  Google Scholar 

  52. van Wanrooij RLJ, de Jong D, Langerak AW, et al. Novel variant of EATL evolving from mucosal γδ-T-cells in a patient with type I RCD. BMJ Open Gastroenterol. 2015;2:e000026.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Malamut G, El Machhour R, Montcuquet N, et al. IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease–associated inflammation and lymphomagenesis. J Clin Invest. 2010;120:2131–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lio C-WJ, Yuita H, Rao A. Dysregulation of the TET family of epigenetic regulators in lymphoid and myeloid malignancies. Blood. 2019;134:1487–97.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rao RC, Dou Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer. 2015;15:334–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bol GM, Xie M, Raman V. DDX3, a potential target for cancer treatment. Mol Cancer. 2015;14:188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Vogel TP, Milner JD, Cooper MA. The Ying and Yang of STAT3 in human disease. J Clin Immunol. 2015;35:615–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hillmer EJ, Zhang H, Li HS, et al. STAT3 signaling in immunity introduction: STAT3 discovery, structure and transcriptional function. Cytokine Growth Factor Rev. 2016;31:1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  59. de Araujo ED, Orlova A, Neubauer HA, et al. Structural implications of STAT3 and STAT5 SH2 domain mutations. Cancers (Basel). 2019;11:1757.

    Article  CAS  Google Scholar 

  60. Lamy T, Moignet A, Loughran TP. LGL leukemia: from pathogenesis to treatment. Blood. 2017;129:1082–94.

    Article  CAS  PubMed  Google Scholar 

  61. Liau NPD, Laktyushin A, Lucet IS, et al. The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun. 2018;9:1558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Nilsen EM, Jahnsen FL, Lundin KE, et al. Gluten induces an intestinal cytokine response strongly dominated by interferon gamma in patients with celiac disease. Gastroenterology. 1998;115:551–63.

    Article  CAS  PubMed  Google Scholar 

  63. Bodd M, Raki M, Tollefsen S, et al. HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. Mucosal Immunol. 2010;3:594–601.

    Article  CAS  PubMed  Google Scholar 

  64. Verstrepen L, Carpentier I, Verhelst K, et al. ABINs: A20 binding inhibitors of NF-κB and apoptosis signaling. Biochem Pharmacol. 2009;78:105–14.

    Article  CAS  PubMed  Google Scholar 

  65. Hymowitz SG, Wertz IE. A20: from ubiquitin editing to tumour suppression. Nat Rev Cancer. 2010;10:332–40.

    Article  CAS  PubMed  Google Scholar 

  66. Charbit-Henrion F, Parlato M, Malamut G, et al. Intestinal immunoregulation: lessons from human mendelian diseases. Mucosal Immunol. 2021;14(5):1017–37.

    Article  CAS  PubMed  Google Scholar 

  67. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21:11–9.

    Article  CAS  PubMed  Google Scholar 

  68. Kooy-Winkelaar YMC, Bouwer D, Janssen GMC, et al. CD4 T-cell cytokines synergize to induce proliferation of malignant and nonmalignant innate intraepithelial lymphocytes. Proc Natl Acad Sci. 2017;114:E980–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. O’Keeffe J, Lynch S, Whelan A, et al. Flow cytometric measurement of intracellular migration inhibition factor and tumour necrosis factor alpha in the mucosa of patients with coeliac disease. Clin Exp Immunol. 2001;125:376–82.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Baran-Marszak F, Boukhiar M, Harel S, et al. Constitutive and B-cell receptor-induced activation of STAT3 are important signaling pathways targeted by bortezomib in leukemic mantle cell lymphoma. Haematologica. 2010;95:1865–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Soderquist CR, Lewis SK, Gru AA, et al. Immunophenotypic spectrum and genomic landscape of refractory celiac disease type II. Am J Surg Pathol. 2021;45(7):905–16.

    PubMed  Google Scholar 

  72. Crescenzo R, Abate F, Lasorsa E, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27:516–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roberti A, Dobay MP, Bisig B, et al. Type II enteropathy-associated T-cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. Nat Commun. 2016;7:12602.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sharma A, Oishi N, Boddicker RL, et al. Recurrent STAT3-JAK2 fusions in indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. Blood. 2018;131:2262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Soderquist CR, Patel N, Murty VV, et al. Genetic and phenotypic characterization of indolent T-cell lymphoproliferative disorders of the gastrointestinal tract. Haematologica. 2019;105(7):1895–906.

    Article  PubMed  CAS  Google Scholar 

  76. Nairismägi M-L, Tan J, Lim JQ, et al. JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma. Leukemia. 2016;30:1311–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Moffitt AB, Ondrejka SL, McKinney M, et al. Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2. J Exp Med. 2017;214:1371–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Laurent C, Nicolae A, Laurent C, et al. Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant-associated ALCL. Blood. 2020;135(5):360–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Al–toma A, Goerres MS, JWR M, et al. Cladribine therapy in refractory celiac disease with aberrant T cells. Clin Gastroenterol Hepatol. 2006;4:1322–7.

    Article  PubMed  CAS  Google Scholar 

  80. Goodman GR, Beutler E, Saven A. Cladribine in the treatment of hairy-cell leukaemia. Best Pract Res Clin Haematol. 2003;16:101–16.

    Article  CAS  PubMed  Google Scholar 

  81. Nijeboer P, Wanrooij R, Gils T, et al. Lymphoma development and survival in refractory coeliac disease type II: histological response as prognostic factor. United Eur Gastroenterol J. 2017;5:208–17.

    Article  CAS  Google Scholar 

  82. Vivas S, de Morales JMR, Ramos F, et al. Alemtuzumab for refractory celiac disease in a patient at risk for enteropathy-associated T-cell lymphoma. N Engl J Med. 2006;354:2514–5.

    Article  CAS  PubMed  Google Scholar 

  83. Cheminant M, Bruneau J, Malamut G, et al. NKp46 is a diagnostic biomarker and may be a therapeutic target in gastrointestinal T-cell lymphoproliferative diseases: A CELAC study. Gut. 2018;68:1396–405.

    Article  PubMed  CAS  Google Scholar 

  84. Mukewar SS, Sharma A, Rubio-Tapia A, et al. Open-capsule budesonide for refractory celiac disease. Am J Gastroenterol. 2017;112:959–67.

    Article  CAS  PubMed  Google Scholar 

  85. Cellier C, Bouma G, van Gils T, et al. Safety and efficacy of AMG 714 in patients with type 2 refractory coeliac disease: a phase 2a, randomised, double-blind, placebo-controlled, parallel-group study. Lancet Gastroenterol Hepatol. 2019;4:960–70.

    Article  PubMed  Google Scholar 

  86. Zhang S, Zhao J, Bai X, et al. Biological effects of IL-15 on immune cells and its potential for the treatment of cancer. Int Immunopharmacol. 2021;91:107318.

    Article  CAS  PubMed  Google Scholar 

  87. Song TL, Nairismägi M-L, Laurensia Y, et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood. 2018;132:1146–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kivelä L, Caminero A, Leffler DA, et al. Current and emerging therapies for coeliac disease. Nat Rev Gastroenterol Hepatol. 2021;18:181–95.

    Article  PubMed  Google Scholar 

  89. Tack GJ, Wondergem MJ, Al-Toma A, et al. Auto-SCT in refractory celiac disease type II patients unresponsive to cladribine therapy. Bone Marrow Transplant. 2011;46:840–6.

    Article  CAS  PubMed  Google Scholar 

  90. Du M-Q. MALT lymphoma: genetic abnormalities, immunological stimulation and molecular mechanism. Best Pract Res Clin Haematol. 2017;30:13–23.

    Article  PubMed  Google Scholar 

  91. Malamut G, Meresse B, Kaltenbach S, et al. Small intestinal CD4+ T-cell lymphoma is a heterogenous entity with common pathology features. Clin Gastroenterol Hepatol. 2014;12:599–608.e1.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Cerf-Bensussan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cording, S., Berrabah, S., Lhermitte, L., Malamut, G., Cerf-Bensussan, N. (2022). Mechanisms of Lymphomagenesis in Celiac Disease: Lessons for Therapy. In: Malamut, G., Cerf-Bensussan, N. (eds) Refractory Celiac Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-90142-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90142-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90141-7

  • Online ISBN: 978-3-030-90142-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics