Skip to main content

Electrical Stimulation for Improvement of Function and Muscle Architecture in Lower Motor Neuron Lesions

  • Chapter
  • First Online:
Functional Electrical Stimulation in Neurorehabilitation
  • 787 Accesses

Abstract

This chapter is developed as a guide for therapists and clinicians. It provides information on physiological principles, evidence in treatment, and offers examples of use of electrical stimulation in the treatment of lower motoneuron lesion. There are many published studies demonstrating the effect of stimulating denervated muscles of various aetiologies. Nevertheless, clinicians are forced to read a large number of papers to optimize their treatment because clinically relevant information is rarely contained in a single paper in a condensed form. The studies provide valuable overviews of the use of electrical stimulation, but often do not adequately address the aspects of practical treatment that therapists rely on.

This chapter provides examples of how stimulation of denervated muscles can be implemented into clinical practice to support and optimize treatment. The stimulation protocols and stimulation parameters are based on scientific studies and supported by clinical evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mödlin M, Forstner C, Hofer C, Mayr W, Richter W, Carraro U, et al. Electrical stimulation of denervated muscles: first results of a clinical study. Artif Org. 2005;29(3):203–6.

    Article  Google Scholar 

  2. Helgason T, Gargiulo P, Jóhannesdóttir F, Ingvarsson P, Knútsdóttir S, Gudmundsdóttir V, et al. Monitoring muscle growth and tissue changes induced by electrical stimulation of denervated degenerated muscles with CT and stereolithographic 3D modeling. Artif Org. 2005;29(6):440–3.

    Article  Google Scholar 

  3. Carraro U, Rossini K, Mayr W, Kern H. Muscle fiber regeneration in human permanent lower motoneuron denervation: relevance to safety and effectiveness of FES-training, which induces muscle recovery in SCI subjects. Artif Org. 2005;29(3):187–91.

    Article  Google Scholar 

  4. Kern H, Carraro U. Home-based functional electrical stimulation for long-term denervated human muscle: history, basics, results and perspectives of the Vienna rehabilitation strategy. Eur J Transl Myol. 2014;24(1):3296.

    Article  Google Scholar 

  5. Kern H, Boncompagni S, Rossini K, Mayr W, Fanò G, Zanin ME, et al. Long-term denervation in humans causes degeneration of both contractile and excitation-contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration? J Neuropathol Exp Neurol. 2004;63(9):919–31.

    Article  Google Scholar 

  6. Kesar T, Chou L-W, Binder-Macleod SA. Effects of stimulation frequency versus pulse duration modulation on muscle fatigue. J Electromyogr Kinesiol. 2008;18(4):662–71.

    Article  Google Scholar 

  7. Koh ES, Kim HC, Lim J-Y. The effects of electromyostimulation application timing on denervated skeletal muscle atrophy. Muscle Nerve. 2017;56(6):E154–61.

    Article  CAS  Google Scholar 

  8. Kern H, Boncompagni S, Rossini K, Mayr W, Fanó G, Zanin ME, et al. Long-term denervation in humans causes degeneration of both contractile and excitation- contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration? J Neuropathol Exp Neurol. 2004;3:919–31.

    Article  Google Scholar 

  9. Ashley Z, Salmons S, Boncompagni S, Protasi F, Russold M, Lanmuller H, et al. Effects of chronic electrical stimulation on long-term denervated muscles of the rabbit hind limb. J Muscle Res Cell M. 2007;28(4–5):203–17.

    Article  Google Scholar 

  10. Kern H, Hofer C, Loefler S, Zampieri S, Gargiulo P, Baba A, et al. Atrophy, ultra-structural disorders, severe atrophy and degeneration of denervated human muscle in SCI and aging. Implications for their recovery by functional electrical stimulation, updated 2017. Neurol Res. 2017;39(7):660–6.

    Article  Google Scholar 

  11. Carraro U, Kern H, Gava P, Hofer C, Loefler S, Gargiulo P, et al. Recovery from muscle weakness by exercise and FES: lessons from masters, active or sedentary seniors and SCI patients. Aging Clin Exp Res. 2017;29(4):579–90.

    Article  Google Scholar 

  12. Kern H, Stramare R, Martino L, Zanato R, Gargiulo P, Carraro U. Permanent LMN denervation of human skeletal muscle and recovery by h-b FES: management and monitoring. Eur J Transl Myol. 2010;20(3):91–104.

    Article  Google Scholar 

  13. Kern H, Carraro U, Adami N, Biral D, Hofer C, Forstner C, et al. Home-based functional electrical stimulation rescues permanently denervated muscles in paraplegic patients with complete lower motor neuron lesion. Neurorehabilit Neural Repair. 2010;24(8):709–21.

    Article  Google Scholar 

  14. Peckham PH, MORTIMER JT, Marsolais EB. Alteration in the force and fatigability of skeletal muscle in quadriplegic humans following exercise induced by chronic electrical stimulation. Clin Orthop Relat Res. 1976;1976(114):326–34.

    Article  Google Scholar 

  15. Bersch I, Koch-Borner S, Fridén J. Motor point topography of fundamental grip actuators in tetraplegia - implications in nerve transfer surgery. J Neurotrauma. 2020;37(3):441–7.

    Article  Google Scholar 

  16. Salmons S, Ashley Z, Sutherland H, Russold MF, Li F, Jarvis JC. Functional electrical stimulation of denervated muscles: basic issues. Artif Org. 2005;29(3):199–202.

    Article  Google Scholar 

  17. Gordon T, Amirjani N, Edwards DC, Chan KM. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients. Exp Neurol. 2010;223(1):192–202.

    Article  Google Scholar 

  18. Brushart TM, Jari R, Verge V, Rohde C, Gordon T. Electrical stimulation restores the specificity of sensory axon regeneration. Exp Neurol. 2005;194(1):221–9.

    Article  Google Scholar 

  19. Gordon T, English AW. Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise. Eur J Neurosci. 2016;43(3):336–50.

    Article  Google Scholar 

  20. Asensio-Pinilla E, Udina E, Jaramillo J, Navarro X. Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Exp Neurol. 2009;219(1):258–65.

    Article  Google Scholar 

  21. Albertin G, Hofer C, Zampieri S, Vogelauer M, Löfler S, Ravara B, et al. In complete SCI patients, long-term functional electrical stimulation of permanent denervated muscles increases epidermis thickness. Neurol Res. 2018;40(4):277–82.

    Article  Google Scholar 

  22. Smit CAJ, Haverkamp GLG, de Groot S, Stolwijk-Swuste JM, Janssen TWJ. Effects of electrical stimulation-induced gluteal versus gluteal and hamstring muscles activation on sitting pressure distribution in persons with a spinal cord injury. Spinal Cord. 2012;50(8):590–4.

    Article  CAS  Google Scholar 

  23. Bryden AM, Kilgore KL, Lind BB, Yu DT. Triceps denervation as a predictor of elbow flexion contractures in C5 and C6 tetraplegia. Arch Phys Med Rehabil. 2004;85(11):1880–5.

    Article  Google Scholar 

  24. Mulcahey MJ, Smith BT, Betz RR. Evaluation of the lower motor neuron integrity of upper extremity muscles in high level spinal cord injury. Spinal Cord. 1999;37(8):585–91.

    Article  CAS  Google Scholar 

  25. Thomas CK, Häger CK, Klein CS. Increases in human motoneuron excitability after cervical spinal cord injury depend on the level of injury. J Neurophysiol. 2017;117(2):684–91.

    Article  Google Scholar 

  26. Zijdewind I, Gant K, Bakels R, Thomas CK. Do additional inputs change maximal voluntary motor unit firing rates after spinal cord injury? Neurorehabilit Neural Repair. 2012;26(1):58–67.

    Article  Google Scholar 

  27. Macefield VG. Discharge rates and discharge variability of muscle spindle afferents in human chronic spinal cord injury. Clin Neurophysiol Pract. 2013;124(1):114–9.

    Article  Google Scholar 

  28. Hulliger M, Matthews PB, Noth J. Static and dynamic fusimotor action on the response of ia fiibres to low frequency sinusoidal stretching of widely ranging amplitude. J Physiol. 1977;267(3):811–38.

    Article  CAS  Google Scholar 

  29. Burke D, Gandevia SC, Macefield G. Responses to passive movement of receptors in joint, skin and muscle of the human hand. J Physiol. 1988;402:347–61.

    Article  CAS  Google Scholar 

  30. Kern H, McKay WB, Dimitrijevic MM, Dimitrijevic MR. Motor control in the human spinal cord and the repair of cord function. Curr Pharm Des. 2005;11(11):1429–39.

    Article  CAS  Google Scholar 

  31. Lømo T, Westgaard RH, Hennig R, Gundersen K. The response of denervated muscle to long-term electrical stimulation. Eur J Transl Myol. 2014;24(1)

    Google Scholar 

  32. Fox IK, Miller AK, Curtin CM. Nerve and tendon transfer surgery in cervical spinal cord injury: individualized choices to optimize function. Top Spinal Cord Inj Rehabil. 2018;24(3):275–87.

    Article  Google Scholar 

  33. Gargiulo P, Helgason T, Reynisson PJ, Helgason B, Kern H, Mayr W, et al. Monitoring of muscle and bone recovery in spinal cord injury patients treated with electrical stimulation using three-dimensional imaging and segmentation techniques: methodological assessment. Artifi Org. 2011;35(3):275–81.

    Article  Google Scholar 

  34. Boncompagni S, Kern H, Rossini K, Hofer C, Mayr W, Carraro U, et al. Structural differentiation of skeletal muscle fibers in the absence of innervation in humans. Proc Natl Acad Sci U S A. 2007;104(49):19339–44.

    Article  CAS  Google Scholar 

  35. Stickler Y, Martinek J, Hofer C, Rattay F. A finite element model of the electrically stimulated human thigh: changes due to denervation and training. Artif Org. 2008;32(8):620–4.

    Article  Google Scholar 

  36. Mayr W, Hofer C, Bijak M, Rafolt D, Unger E, Reichel M, et al. Functional electrical stimulation (FES) of denervated muscles: existing and prospective technological solutions. Basic Appl Myol. 2003;6:287–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Bersch-Porada .

Editor information

Editors and Affiliations

8.1 Electronic Supplementary Material

(MP4 25060 kb)

(MP4 17935 kb)

(MP4 29853 kb)

(MP4 7815 kb)

(MP4 11482 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bersch-Porada, I. (2022). Electrical Stimulation for Improvement of Function and Muscle Architecture in Lower Motor Neuron Lesions. In: Schick, T. (eds) Functional Electrical Stimulation in Neurorehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-030-90123-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90123-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90122-6

  • Online ISBN: 978-3-030-90123-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics