Skip to main content

Functional Electrical Stimulation to Improve Mobility

  • Chapter
  • First Online:
Functional Electrical Stimulation in Neurorehabilitation
  • 757 Accesses

Abstract

Drop foot is a common problem in neurological disorders such as stroke, multiple sclerosis, traumatic brain injury, and incomplete paraparesis resulting in insufficient elevation of the forefoot during the swing phase of the gait cycle. In many cases, the weakness of the drop foot is associated with spasticity and more complex motor problems, leading to frequent falls.

Functional electrical stimulation (FES) is a therapeutic modality to “correct” drop foot during walking. The peroneal nerve is stimulated using surface electrodes placed on the most superficial course over the head of the fibula. Stimulation of the peroneal nerve induces activation of the anterior tibialis muscle and the peroneal muscle group, resulting in dorsiflexion and eversion of the foot. By using a pressure-sensitive heel switch or an accelerometer, stimulation is synchronized with the gait cycle.

This article reflects the clinical effects of FES with both one-channel and two-channel simulators on gait economy. Alternatively, the nociceptive withdrawal reflex (NWR), elicited by electrical stimulation on the sole of the foot can enhance dorsiflexion of the foot and, in particular, hip and knee flexion during the gait cycle.

In the following, the differentiation of orthotic and therapeutic effect will be discussed in more detail. The orthotic effect is basically understood as the prompt improvement of walking, directly induced by the FES, compared to walking without FES. To achieve a therapeutic effect and the associated activation of the motor cortex and corticospinal pathways, daily stimulation for at least 6 months is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinter MM, Brainin M. Rehabilitation after stroke in older people. Maturitas. 2012;71(2):104–8.

    Article  Google Scholar 

  2. Bohannon RW, Horton MG, Wikholm JB. Importance of four variables of walking to patients with stroke. Int J Rehabil Res. 1991;14:246–50.

    Article  CAS  Google Scholar 

  3. Dobkin BH. Clinical practice. Rehabilitation after stroke. N Engl J Med. 2005;352(16):1677–84.

    Article  CAS  Google Scholar 

  4. Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76(1):27–32.

    Article  CAS  Google Scholar 

  5. Preston E, Ada L, Dean CM, Stanton R, Waddington G. What is the probability of patients who are nonambulatory after stroke regaining independent walking? A systematic review. Int J Stroke. 2011;6:531–40.

    Article  Google Scholar 

  6. Olney SJ, Richards C. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture. 1996;4:136–48.

    Article  Google Scholar 

  7. van de Port IG, Wood-Dauphinee S, Lindeman E, Kwakkel G. Effects of exercise training programs on walking competency after stroke: a systematic review. Am J Phys Med Rehabil. 2007;86:935–51.

    Article  Google Scholar 

  8. Dean CM, Richards CL, Malouin F. Task-related circuit training improves performance of locomotor tasks in chronic stroke: a randomized, controlled pilot trial. Arch Phys Med Rehabil. 2000;81:409–17.

    Article  CAS  Google Scholar 

  9. Laufer Y, Dickstein R, Chefez Y, Marcovitz E. The effect of treadmill training on the ambulation of stroke survivors in the early stages of rehabilitation: a randomized study. J Rehabil Res Dev. 2001;38:69–78.

    CAS  PubMed  Google Scholar 

  10. Ada L, Dean CM, Hall JM, Bampton J, Crompton S. A treadmill and overground walking program improves walking in persons residing in the community after stroke: a placebo-controlled, randomized trial. Arch Phys Med Rehabil. 2003;84:1486–91.

    Article  Google Scholar 

  11. Eich HJ, Mach H, Werner C, Hesse S. Aerobic treadmill plus Bobath walking training improves walking in subacute stroke: a randomized controlled trial. Clin Rehabil. 2004;18:640–51.

    Article  Google Scholar 

  12. Salbach NM, Mayo NE, Wood-Dauphinee S, Hanley JA, Richards CL, Cote R. A task-orientated intervention enhances walking distance and speed in the first year post stroke: a randomized controlled trial. Clin Rehabil. 2004;18:509–19.

    Article  CAS  Google Scholar 

  13. Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hoölig G, Koch R, Hesse S. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21:17–27.

    Article  CAS  Google Scholar 

  14. Martin CL, Phillips BA, Kilpatrick TJ, Butzkueven H, Tubridy N, McDonald E, Galea MP. Gait and balance impairment in early multiple sclerosis in the absence of clinical disability. Mult Scler. 2006;12:620–8.

    Article  CAS  Google Scholar 

  15. Liberson WT, Holmquest HJ, Scot D, Dow M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961;42:101–5.

    CAS  PubMed  Google Scholar 

  16. Stein RB, Everaert DG, Thompson AK, Chong SL, Whittaker M, Robertson J, Kuether G. Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabil Neural Repair. 2010;24:152–67.

    Article  Google Scholar 

  17. Sabut SK, Sikdar C, Mondal R, Kumar R, Mahadevappa M. Restoration of gait and motor recovery by functional elektrical stimulation therapy in persons with stroke. Disabil Rehabil. 2010;32:1594–603.

    Article  Google Scholar 

  18. Sheffler LR, Taylor PN, Balley SN, Gunzler DD, Burrke JH, Ijzermann MJ, Chae J. Surface peroneal nerve stimulation in lower limb hemiparesis: effect on quantitative gait parameters. Am J Phys Med Rehabil. 2015;94(5):341–57.

    Article  Google Scholar 

  19. Barret C, Taylor P. The effect of the Odstock Drop Foot Stimulator on perceived quality of life for people with stroke and multiple sclerosis. Neuromodulation. 2010;13(1):58–64.

    Article  Google Scholar 

  20. Burridge JH, Taylor PN, Hagan SA, Wood DE, Swain ID. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil. 1997;11(3):201–10.

    Article  CAS  Google Scholar 

  21. Granat MH, Maxwell DJ, Ferguson AC, Lees KR, Barbenel JC. Peroneal stimulator: evaluation for the correction of spastic drop-foot in hemiplegia. Arch Phys Med Rehabil. 1996;77:19–24.

    Article  CAS  Google Scholar 

  22. Lamontagne A, Malouin F, Richards CL. Locomotor-specific measure of spasticity of plantarflexor muscles after stroke. Arch Phys Med Rehabil. 2001;82:1696–704.

    Article  CAS  Google Scholar 

  23. Sabut SK, Sikdar C, Kumar R, Mahadevappa M. Functional electrical stimulation of dorsiflexor muscle: effect on dorsiflexor strength, plantarflexor spasticity, and motor recovery in stroke patients. NeuroRehabilitation. 2011;29:393–400.

    Article  Google Scholar 

  24. Springer S, Vatine JJ, Lipson R, Wolf A, Laufer Y. Effects of dual-channel functional electrical stimulation on gait performance in patients with hemiparesis. Sci World J. 2012;2012:530906.

    Article  Google Scholar 

  25. Springer S, Vatine JJ, Wolf A, Laufer Y. The effects of dual-channel functional electrical stimulation on stance phase sagital kinematic in patients with hemiparesis. J Electromyogr Kinesil. 2013;23(2):476–82.

    Article  Google Scholar 

  26. Springer S, Laufer Y, Becher M, Vatine JJ. Dual-channel functional electrical stimulation improvements in speed-based gait classifications. Clin Interv Aging. 2013;8:271–7.

    Article  Google Scholar 

  27. Spaich EG, Svaneorg N, Jorgenson HRM, Andersen OK. Rehabilitation of the hemiparetic gait by nociceptive withdrawal reflex-based functional electrical therapy: a randomized, a single-blinded study. J NeuroEng Rehabil. 2014;11(81):1–10.

    Google Scholar 

  28. Salzmann C, Sehle A, Liepert J. Using the flexor reflex in a chronic stroke patient for gait improvement: a case report. Front Neurol. 2021;12:691214.

    Article  Google Scholar 

  29. Hausmann J, Sweeney-Reed C, Sobiaray U, Matzke M, Heinze HJ, Voges J, Buentjen L. Functional electrical stimulation through direct 4-channel nerve stimulation to improve gait in multiple sclerosis: a feasibility study. J Neuroeng Rehabil. 2015;12:100.

    Google Scholar 

  30. da Cunha MJ, Rech KD, Salazar AP, Pagnussat AS. Functional electrical stimulation of the peroneal nerve improves post-stroke gait speed when combined with physiotherapy. A systematic review and meta-analysis. Ann Phys Rehabil Med. 2021;64(1):101388.

    Article  Google Scholar 

  31. Street T, Swain I, Taylor P. Training and orthotic effects related to functional electrical stimulation of the peroneal nerve in stroke. J Rehabil Med. 2017;49:113–9.

    Article  Google Scholar 

  32. Laufer Y, Ring H, Sprecher E, Hausdorff JM. Gait in individuals with chronic hemiparesis: one year follow-up of the effect of a neuroprothesis that ameliorates foot drop. H Neurol Phys Ther. 2009;33:104–10.

    Article  Google Scholar 

  33. Everaert DG, Thompson AK, Chong SL, Stein RB. Does functional electrical stimulation for foot drop strengthen corticospinal connections? Neurorehabil Neural Repair. 2010;24(2):168–77.

    Article  Google Scholar 

  34. Stein RB, Chong S, Everaert DG, Rolf R, Thompson AK, Whittaker M, Robertson J, Fung J, Preuss R, Momose K, Ihashi K. A multicenter trial of a footdrop stimulator controlled by a tilt sensor. Neurorehabil Neural Repair. 2006;20:371–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela M. Pinter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pinter, M.M. (2022). Functional Electrical Stimulation to Improve Mobility. In: Schick, T. (eds) Functional Electrical Stimulation in Neurorehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-030-90123-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90123-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90122-6

  • Online ISBN: 978-3-030-90123-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics