Skip to main content

New Insights in Spermatogonial Stem Cells

  • Chapter
  • First Online:
Stem Cells in Reproductive Tissues and Organs

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 70))

  • 714 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACVR1B:

Activin A receptor type 1B

ACVR2B:

Activin A receptor type 2B

AdVac:

A-dark spermatogonium with nuclear dilution zone

AdNoVac:

A-dark spermatogonium without nuclear vacuole

AMBRA1:

Autophagy and beclin 1 regulator 1

ALDOA:

Aldolase, fructose-bisphosphate A

BAMBI:

BMP and activin membrane-bound inhibitor

BCL2:

BCL2 apoptosis regulator

BMPR1B:

Bone morphogenetic protein receptor type 1B

C3orf22:

Chromosome 3 open reading frame 22

CADH1:

Cadherin 1 (CDH1)

CD:

Cluster of differentiation

CD9:

CD9 molecule

CDK:

Cyclin-dependent kinase

CELF4:

CUGBP Elav-like family member 4

C-MYC:

C-MYC proto-oncogene, BHLH transcription factor

COL1A2:

Collagen type I alpha 2 chain

DA:

Dopamine, dopaminergic neurons

DAZL:

Deleted in azoospermia like

DCAF4L1:

DDB1 and CUL4 associated factor 4 like 1

DDX4:

DEAD-box helicase 4 (VASA)

DEG:

Differentially expressed genes

DMRT1:

Doublesex and mab-3-related transcription factor 1

DOCK8:

Dedicator of cytokinesis 8

DUSP6:

Dual specificity phosphatase 6

DVL1:

Dishevelled segment polarity protein 1

EDNRA:

Endothelin receptor type A

EGC:

Embryonic germ cell

EGR4:

Early growth response 4

EIF2:

Eukaryotic translation initiation factor 2

EIF4B:

Eukaryotic translation initiation factor 4B

EIF4E:

Eukaryotic translation initiation factor 4E

EIF4EBP1:

Eukaryotic translation initiation factor 4E-binding protein 1

ELAVL2:

ELAV-like RNA binding protein 2

ENO2:

Enolase 2

ENO3:

Enolase 3

EOMES:

Eomesodermin

EPHA2:

EPH receptor A2

ESC:

Embryonic stem cell

ETV5:

ETS variant transcription factor 5

FACS:

Fluorescence-activated cell sorting

FGF:

Fibroblast growth factor

FGFR3:

Fibroblast growth factor receptor 3

FSD1:

Fibronectin type III and SPRY domain containing 1

Fibs:

Fibroblast

FSHR:

Follicle-stimulating hormone receptor

FST:

Follistatin

GAD1:

Glutamate decarboxylase 1

GATA4:

GATA binding protein 4

GDF3:

Growth differentiation factor

GDNF:

Glial cell-derived neurotrophic factor

GFP:

Green fluorescent protein

GFRA1:

GDNF family receptor alpha 1

GiPSC:

GSCs-derived iPSC

GPR125:

Adhesion G protein-coupled receptor A3 (ADGRA3)

GSC:

Germ stem cell

h:

Human

haGSC:

Human adult germ stem cell

hFibs:

Human fibroblasts

ICA1L:

Islet cell autoantigen 1 like

ID4:

Inhibitor of DNA binding 4, HLH protein

INTGA6:

Integrin A6

iPSC:

Induced pluripotent stem cell

KIT:

KIT proto-oncogene, receptor tyrosine kinase

KLF4:

Kruppel-like factor 4

KLF6:

Kruppel-like factor 6

LATS2:

Large tumor suppressor kinase 2

L1TD1:

LINE1-type transposase domain containing 1

LIF:

Leukemia inhibitory factor

LIN28:

Lin-28 homolog A

LPPR3:

Phospholipid phosphatase-related 3

LY6K:

Lymphocyte antigen 6 family member K

MACS:

Magnetic-activated cell sorting

MAGEA4:

MAGE family member A4

MAGEC1:

MAGE family member C1

MCM7:

Minichromosome maintenance complex component 7

MEF:

Mouse embryonic fibroblast

MKI67:

Marker of proliferation Ki-67

MLST8:

MTOR-associated protein, LST8 homolog

mRNA:

Messenger ribonucleic acid

MSC:

Mesenchymal stem cell

mTOR:

Mechanistic/mammalian target of rapamycin kinase

NANOG:

Nanog homeobox

NANOS2:

Nanos C2HC-type zinc finger 2

NANOS3:

Nanos C2HC-type zinc finger 3

NOG:

Noggin

OCT4:

Octamer-binding transcription factor 4

p21:

Cyclin-dependent kinase inhibitor 1

p53:

Tumor protein P53

PABPC1:

Poly(A) binding protein cytoplasmic 1

PASD1:

PAS domain-containing repressor 1

PAX7:

Paired box 7

PDGFRA:

Platelet-derived growth factor receptor alpha

PFKL:

Phosphofructokinase, liver type

PGC:

Primordial germ cell

PHGDH:

Phosphoglycerate dehydrogenase

PIWIL4:

Piwi-like RNA-mediated gene silencing 4

PLZF:

Zinc finger and BTB domain containing 16 (ZBTB16)

POU5F1:

POU class 5 homeobox 1

PPP1R36:

Protein phosphatase 1 regulatory subunit 36

PPRC1:

PPARG-related coactivator 1

PTPN13:

Protein tyrosine phosphatase non-receptor type 13

PVR:

PVR cell adhesion molecule

RA:

Retinoic acid

RHOX10:

Rhox homeobox family member 10

RHOX13:

Rhox homeobox family member 13

RHOXF1:

Rhox homeobox family member 1

RNA:

Ribonucleic acid

RNAi:

Ribonucleic acid interference

RPTOR:

Regulatory-associated protein of MTOR complex 1

RT-PCR:

Reverse transcription polymerase chain reaction

SAGE1:

Sarcoma antigen 1

SALL4:

Spalt-like transcription factor 4

SCF:

Stem cell factor

SCOS:

Sertoli-cell-only-syndrome

scRNA:

Small conditional RNA

scRNA-seq:

Single-cell RNA sequencing

SERINC2:

Serine incorporator 2

SIX1:

SIX homeobox 1

SOX2:

SRY-box transcription factor 2

SPATS2L:

Spermatogenesis-associated serine-rich 2 like

SPG:

Spermatogonium, spermatogonia

SSC:

Spermatogonial stem cell

SSEA1:

Stage-specific embryonic antigen-1

SSEA4:

Stage-specific embryonic antigen-4

ST3GAL2:

ST3 beta-galactoside alpha-2,3-sialyltransferase 2

STRA8:

Stimulated by retinoic acid 8

SUSD2:

Sushi domain containing 2

SV40T:

SV40 large T antigen

TAZ:

Tafazzi

TCF3:

Transcription factor 3

TCL1:

TCL1 family AKT coactivator

TCN1:

Transcobalamin 1

TCN2:

Transcobalamin 2

TERT:

Telomerase reverse transcriptase

TEX15:

Testis expressed 15, meiosis and synapsis associated

TGFA:

Transforming growth factor alpha

TGFBR:

Transforming growth factor beta receptor

TIMP2:

TIMP metallopeptidase inhibitor 2

TOP2A:

DNA topoisomerase II alpha

TPI1:

Triosephosphate isomerase 1

TRA-1-60:

 T cell receptor alpha locus

TRA-1-81:

 T cell receptor alpha locus

TSPAN8:

Tetraspanin 8

TSPAN33:

Tetraspanin 33

TPH1:

Tryptophan hydroxylase 1

TRP53:

Tumor protein P53

TSPYL1:

Testis-specific Y-encoded-like protein 1

TTC14:

Tetratricopeptide repeat domain 14

UCHL1:

Ubiquitin C-terminal hydrolase L1

USF3:

Upstream transcription factor family member 3

UTF1:

Undifferentiated embryonic cell transcription factor 1

VASA:

Vasa homolog (DDX4)

ZBTB16:

Zinc finger and BTB domain containing 16

ZBTB33:

Zinc finger and BTB domain containing 33

ZFHX3:

Zinc finger homeobox 3

ZNF654:

Zinc finger protein 654

YAP:

Yes1-associated transcriptional regulator

References

  1. Djureinovic D, Fagerberg L, Hallström B, Danielsson A, Lindskog C, Uhlén M, Pontén F (2014) The human testis-specific proteome defined by transcriptomics and antibody-based profiling. Mol Hum Reprod 20:476–488. https://doi.org/10.1093/molehr/gau018

    Article  CAS  PubMed  Google Scholar 

  2. Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjöstedt E, Lundberg E, Szigyarto CA-K, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson A, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Ponten F, Uhlén M (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13:397–406. https://doi.org/10.1074/mcp.M113.035600

    Article  CAS  PubMed  Google Scholar 

  3. Pineau C, Hikmet F, Zhang C, Oksvold P, Chen S, Fagerberg L, Uhlén M, Lindskog C (2019) Cell type-specific expression of testis elevated genes based on transcriptomics and antibody-based proteomics. J Proteome Res 18:4215–4230. https://doi.org/10.1021/acs.jproteome.9b00351

    Article  CAS  PubMed  Google Scholar 

  4. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA-K, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist P-H, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419

  5. Yu NY-L, Hallström BM, Fagerberg L, Ponten F, Kawaji H, Carninci P, Forrest ARR, Fantom Consortium, Hayashizaki Y, Uhlén M, Daub CO (2015) Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium. Nucleic Acids Res 43:6787–6798. https://doi.org/10.1093/nar/gkv608

  6. Guo J, Grow EJ, Yi C, Mlcochova H, Maher GJ, Lindskog C, Murphy PJ, Wike CL, Carrell DT, Goriely A, Hotaling JM, Cairns BR (2017) Chromatin and single-cell RNA-seq profiling reveal dynamic signaling and metabolic transitions during human spermatogonial stem cell development. Cell Stem Cell 21:533-546.e6. https://doi.org/10.1016/j.stem.2017.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo J, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie X, Guo Y, Takei Y, Yun J, Cai L, Kim R, Carrell DT, Goriely A, Hotaling JM, Cairns BR (2018) The adult human testis transcriptional cell atlas. Cell Res 28:1141–1157. https://doi.org/10.1038/s41422-018-0099-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jan SZ, Vormer TL, Jongejan A, Röling MD, Silber SJ, de Rooij DG, Hamer G, Repping S, van Pelt AMM (2017) Unraveling transcriptome dynamics in human spermatogenesis. Development 144:3659–3673. https://doi.org/10.1242/dev.152413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hermann BP, Cheng K, Singh A, Roa-De La Cruz L, Mutoji KN, Chen I-C, Gildersleeve H, Lehle JD, Mayo M, Westernströer B, Law NC, Oatley MJ, Velte EK, Niedenberger BA, Fritze D, Silber S, Geyer CB, Oatley JM, McCarrey JR (2018) The Mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep 25:1650-1667.e8. https://doi.org/10.1016/j.celrep.2018.10.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sohni A, Tan K, Song H-W, Burow D, de Rooij DG, Laurent L, Hsieh T-C, Rabah R, Hammoud SS, Vicini E, Wilkinson MF (2019) The neonatal and adult human testis defined at the single-cell level. Cell Rep 26:1501-1517.e4. https://doi.org/10.1016/j.celrep.2019.01.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang M, Liu X, Chang G, Chen Y, An G, Yan L, Gao S, Xu Y, Cui Y, Dong J, Chen Y, Fan X, Hu Y, Song K, Zhu X, Gao Y, Yao Z, Bian S, Hou Y, Lu J, Wang R, Fan Y, Lian Y, Tang W, Wang Y, Liu J, Zhao L, Wang L, Liu Z, Yuan R, Shi Y, Hu B, Ren X, Tang F, Zhao X-Y, Qiao J (2018) Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell 23:599-614.e4. https://doi.org/10.1016/j.stem.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  12. Neuhaus N, Yoon J, Terwort N, Kliesch S, Seggewiss J, Huge A, Voss R, Schlatt S, Grindberg RV, Schöler HR (2017) Single-cell gene expression analysis reveals diversity among human spermatogonia. Mol Hum Reprod 23:79–90. https://doi.org/10.1093/molehr/gaw079

    Article  CAS  PubMed  Google Scholar 

  13. Du Y, Du Z, Zheng H, Wang D, Li S, Yan Y, Li Y (2013) GABA exists as a negative regulator of cell proliferation in spermatogonial stem cells. Cell Mol Biol Lett 18:149–162. https://doi.org/10.2478/s11658-013-0081-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caldeira-Brant AL, Martinelli LM, Marques MM, Reis AB, Martello R, Almeida FRCL, Chiarini-Garcia H (2020) A subpopulation of human Adark spermatogonia behaves as the reserve stem cell. Reproduction 159:437–451. https://doi.org/10.1530/REP-19-0254

    Article  CAS  PubMed  Google Scholar 

  15. von Kopylow K, Spiess A-N (2017) Human spermatogonial markers. Stem Cell Res 25:300–309. https://doi.org/10.1016/j.scr.2017.11.011

    Article  CAS  Google Scholar 

  16. Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14:397–411. https://doi.org/10.1038/nrgastro.2017.38

    Article  CAS  PubMed  Google Scholar 

  17. Fayomi AP, Orwig KE (2018) Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res 29:207–214. https://doi.org/10.1016/j.scr.2018.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo J, Nie X, Giebler M, Mlcochova H, Wang Y, Grow EJ, DonorConnect KR, Tharmalingam M, Matilionyte G, Lindskog C, Carrell DT, Mitchell RT, Goriely A, Hotaling JM, Cairns BR (2020) The dynamic transcriptional cell atlas of testis development during human puberty. Cell Stem Cell 26:262-276.e4. https://doi.org/10.1016/j.stem.2019.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Conrad S, Renninger M, Hennenlotter J, Wiesner T, Just L, Bonin M, Aicher W, Bühring H-J, Mattheus U, Mack A, Wagner H-J, Minger S, Matzkies M, Reppel M, Hescheler J, Sievert K-D, Stenzl A, Skutella T (2008) Generation of pluripotent stem cells from adult human testis. Nature 456:344–349. https://doi.org/10.1038/nature07404

    Article  CAS  PubMed  Google Scholar 

  20. Conrad S, Azizi H, Hatami M, Kubista M, Bonin M, Hennenlotter J, Renninger M, Skutella T (2014) Differential gene expression profiling of enriched human spermatogonia after short- and long-term culture. BioMed Res Int 2014:138350. https://doi.org/10.1155/2014/138350

  21. Conrad S, Azizi H, Hatami M, Kubista M, Bonin M, Hennenlotter J, Sievert K-D, Skutella T (2016) Expression of genes related to germ cell lineage and pluripotency in single cells and colonies of human adult germ stem cells. Stem Cells Int 2016:8582526. https://doi.org/10.1155/2016/8582526

    Article  CAS  PubMed  Google Scholar 

  22. Lim JJ, Sung S-Y, Kim HJ, Song S-H, Hong JY, Yoon TK, Kim JK, Kim K-S, Lee DR (2010) Long-term proliferation and characterization of human spermatogonial stem cells obtained from obstructive and non-obstructive azoospermia under exogenous feeder-free culture conditions. Cell Prolif 43:405–417. https://doi.org/10.1111/j.1365-2184.2010.00691.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Izadyar F, Wong J, Maki C, Pacchiarotti J, Ramos T, Howerton K, Yuen C, Greilach S, Zhao HH, Chow M, Chow Y-C, Rao J, Barritt J, Bar-Chama N, Copperman A (2011) Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod 26:1296–1306. https://doi.org/10.1093/humrep/der026

    Article  PubMed  Google Scholar 

  24. He Z, Kokkinaki M, Jiang J, Zeng W, Dobrinski I, Dym M (2012) Isolation of human male germ-line stem cells using enzymatic digestion and magnetic-activated cell sorting. Methods Mol Biol 825:45–57. https://doi.org/10.1007/978-1-61779-436-0_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bryant JM, Meyer-Ficca ML, Dang VM, Berger SL, Meyer RG (2013) Separation of spermatogenic cell types using STA-PUT velocity sedimentation. J Vis Exp 2013:50646. https://doi.org/10.3791/50648

    Article  CAS  Google Scholar 

  26. Harichandan A, Sivasubramaniyan K, Hennenlotter J, Schwentner C, Stenzl A, Bühring H-J (2013) Isolation of adult human spermatogonial progenitors using novel markers. J Mol Cell Biol 5:351–353. https://doi.org/10.1093/jmcb/mjt029

    Article  CAS  PubMed  Google Scholar 

  27. Chang Y-F, Lee-Chang JS, Panneerdoss S, MacLean JA, Rao MK (2011) Isolation of Sertoli, Leydig, and spermatogenic cells from the mouse testis. Biotechniques 51(341–342):344. https://doi.org/10.2144/000113764

    Article  Google Scholar 

  28. Meistrich ML (1977) Separation of spermatogenic cells and nuclei from rodent testes. Methods Cell Biol 15:15–54. https://doi.org/10.1016/s0091-679x(08)60207-1

    Article  CAS  PubMed  Google Scholar 

  29. Meistrich ML, Longtin J, Brock WA, Grimes SR, Mace ML (1981) Purification of rat spermatogenic cells and preliminary biochemical analysis of these cells. Biol Reprod 25:1065–1077. https://doi.org/10.1095/biolreprod25.5.1065

    Article  CAS  PubMed  Google Scholar 

  30. Richer G, Baert Y, Goossens E (2020) In-vitro spermatogenesis through testis modelling: toward the generation of testicular organoids. Andrology 8:879–891. https://doi.org/10.1111/andr.12741

    Article  PubMed  PubMed Central  Google Scholar 

  31. Baert Y, Dvorakova-Hortova K, Margaryan H, Goossens E (2019) Mouse in vitro spermatogenesis on alginate-based 3D bioprinted scaffolds. Biofabrication 11:035011. https://doi.org/10.1088/1758-5090/ab1452

  32. Pendergraft SS, Sadri-Ardekani H, Atala A, Bishop CE (2017) Three-dimensional testicular organoid: a novel tool for the study of human spermatogenesis and gonadotoxicity in vitro. Biol Reprod 96:720–732. https://doi.org/10.1095/biolreprod.116.143446

    Article  PubMed  Google Scholar 

  33. Perrard M-H, Sereni N, Schluth-Bolard C, Blondet A, D Estaing SG, Plotton I, Morel-Journel N, Lejeune H, David L, Durand P (2016) Complete human and rat ex vivo spermatogenesis from fresh or frozen testicular tissue. Biol Reprod 95:89. https://doi.org/10.1095/biolreprod.116.142802

  34. Vermeulen M, Del Vento F, de Michele F, Poels J, Wyns C (2018) Development of a cytocompatible scaffold from pig immature testicular tissue allowing human Sertoli cell attachment, proliferation and functionality. Int J Mol Sci 19:227. https://doi.org/10.3390/ijms19010227

    Article  CAS  PubMed Central  Google Scholar 

  35. von Kopylow K, Schulze W, Salzbrunn A, Schaks M, Schäfer E, Roth B, Schlatt S, Spiess A-N (2018) Dynamics, ultrastructure and gene expression of human in vitro organized testis cells from testicular sperm extraction biopsies. Mol Hum Reprod 24:123–134. https://doi.org/10.1093/molehr/gax070

    Article  CAS  Google Scholar 

  36. Stevens LC (1984) Spontaneous and experimentally induced testicular teratomas in mice. Cell Differ 15:69–74. https://doi.org/10.1016/0045-6039(84)90054-x

    Article  CAS  PubMed  Google Scholar 

  37. Matsui Y, Zsebo K, Hogan BLM (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841–847. https://doi.org/10.1016/0092-8674(92)90317-6

    Article  CAS  PubMed  Google Scholar 

  38. Resnick JL, Bixler LS, Cheng L, Donovan PJ (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550–551. https://doi.org/10.1038/359550a0

    Article  CAS  PubMed  Google Scholar 

  39. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156. https://doi.org/10.1038/292154a0

    Article  CAS  PubMed  Google Scholar 

  40. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638. https://doi.org/10.1073/pnas.78.12.7634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119:1001–1012. https://doi.org/10.1016/j.cell.2004.11.011

    Article  CAS  PubMed  Google Scholar 

  42. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203. https://doi.org/10.1038/nature04697

    Article  CAS  PubMed  Google Scholar 

  43. Guan K, Wolf F, Becker A, Engel W, Nayernia K, Hasenfuss G (2009) Isolation and cultivation of stem cells from adult mouse testes. Nat Protoc 4:143–154. https://doi.org/10.1038/nprot.2008.242

    Article  CAS  PubMed  Google Scholar 

  44. Ko K, Tapia N, Wu G, Kim JB, Bravo MJA, Sasse P, Glaser T, Ruau D, Han DW, Greber B, Hausdörfer K, Sebastiano V, Stehling M, Fleischmann BK, Brüstle O, Zenke M, Schöler HR (2009) Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5:87–96. https://doi.org/10.1016/j.stem.2009.05.025

    Article  CAS  PubMed  Google Scholar 

  45. Ko K, Araúzo-Bravo MJ, Kim J, Stehling M, Schöler HR (2010) Conversion of adult mouse unipotent germline stem cells into pluripotent stem cells. Nat Protoc 5:921–928. https://doi.org/10.1038/nprot.2010.44

    Article  CAS  PubMed  Google Scholar 

  46. Azizi H, Conrad S, Hinz U, Asgari B, Nanus D, Peterziel H, Hajizadeh Moghaddam A, Baharvand H, Skutella T (2016) Derivation of pluripotent cells from mouse SSCs seems to be age dependent. Stem Cells Int 2016:8216312. https://doi.org/10.1155/2016/8216312

    Article  CAS  PubMed  Google Scholar 

  47. Bazley FA, Liu CF, Yuan X, Hao H, All AH, De Los AA, Zambidis ET, Gearhart JD, Kerr CL (2015) Direct reprogramming of human primordial germ cells into induced pluripotent stem cells: efficient generation of genetically engineered germ cells. Stem Cells Dev 24:2634–2648. https://doi.org/10.1089/scd.2015.0100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 95:13726–13731. https://doi.org/10.1073/pnas.95.23.13726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mizrak SC, Chikhovskaya JV, Sadri-Ardekani H, van Daalen S, Korver CM, Hovingh SE, Roepers-Gajadien HL, Raya A, Fluiter K, de Reijke TM, de la Rosette JJMCH, Knegt AC, Belmonte JC, van der Veen F, de Rooij DG, Repping S, van Pelt AMM (2010) Embryonic stem cell-like cells derived from adult human testis. Hum Reprod 25:158–167. https://doi.org/10.1093/humrep/dep354

    Article  CAS  PubMed  Google Scholar 

  50. Kossack N, Meneses J, Shefi S, Nguyen HN, Chavez S, Nicholas C, Gromoll J, Turek PJ, Reijo-Pera RA (2009) Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells 27:138–149. https://doi.org/10.1634/stemcells.2008-0439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chikhovskaya JV, Jonker MJ, Meissner A, Breit TM, Repping S, van Pelt AMM (2012) Human testis-derived embryonic stem cell-like cells are not pluripotent, but possess potential of mesenchymal progenitors. Hum Reprod 27:210–221. https://doi.org/10.1093/humrep/der383

    Article  CAS  PubMed  Google Scholar 

  52. Gonzalez R, Griparic L, Vargas V, Burgee K, Santacruz P, Anderson R, Schiewe M, Silva F, Patel A (2009) A putative mesenchymal stem cells population isolated from adult human testes. Biochem Biophys Res Commun 385:570–575. https://doi.org/10.1016/j.bbrc.2009.05.103

    Article  CAS  PubMed  Google Scholar 

  53. Stimpfel M, Skutella T, Kubista M, Malicev E, Conrad S, Virant-Klun I (2012) Potential stemness of frozen-thawed testicular biopsies without sperm in infertile men included into the in vitro fertilization programme. J Biomed Biotechnol 2012:291038. https://doi.org/10.1155/2012/291038

  54. Lim JJ, Kim H, Kim K-S, Hong J, Lee D (2013) In vitro culture-induced pluripotency of human spermatogonial stem cells. BioMed Res Int 2013:143028. https://doi.org/10.1155/2013/143028

  55. Kerr CL, Shamblott MJ, Gearhart JD (2006) Pluripotent stem cells from germ cells. Methods Enzymol 419:400–426. https://doi.org/10.1016/S0076-6879(06)19016-3

    Article  CAS  PubMed  Google Scholar 

  56. Pashai N, Hao H, All A, Gupta S, Chaerkady R, De Los Angeles A, Gearhart JD, Kerr CL (2012) Genome-wide profiling of pluripotent cells reveals a unique molecular signature of human embryonic germ cells. PloS One 7:e39088. https://doi.org/10.1371/journal.pone.0039088

  57. Turnpenny L, Brickwood S, Spalluto CM, Piper K, Cameron IT, Wilson DI, Hanley NA (2003) Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells 21:598–609. https://doi.org/10.1634/stemcells.21-5-598

    Article  PubMed  Google Scholar 

  58. Tanaka T, Kanatsu-Shinohara M, Hirose M, Ogura A, Shinohara T (2015) Pluripotent cell derivation from male germline cells by suppression of Dmrt1 and Trp53. J Reprod Dev 61:473–484. https://doi.org/10.1262/jrd.2015-059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G, Hock H, Hochedlinger K (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41:968–976. https://doi.org/10.1038/ng.428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Streckfuss-Bömeke K, Wolf F, Azizian A, Stauske M, Tiburcy M, Wagner S, Hübscher D, Dressel R, Chen S, Jende J, Wulf G, Lorenz V, Schön MP, Maier LS, Zimmermann WH, Hasenfuss G, Guan K (2013) Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. Eur Heart J 34:2618–2629. https://doi.org/10.1093/eurheartj/ehs203

    Article  CAS  PubMed  Google Scholar 

  61. Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I, Pinho S, Silva JC, Azuara V, Walsh M, Vallier L, Gil J (2009) Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23:2134–2139. https://doi.org/10.1101/gad.1811609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740. https://doi.org/10.1038/nrm2233

    Article  CAS  PubMed  Google Scholar 

  63. Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Izpisúa Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–1144. https://doi.org/10.1038/nature08311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li H, Collado M, Villasante A, Strati K, Ortega S, Cañamero M, Blasco MA, Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139. https://doi.org/10.1038/nature08290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA (2009) Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4:141–154. https://doi.org/10.1016/j.stem.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  66. Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460:1149–1153. https://doi.org/10.1038/nature08287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460:1145–1148. https://doi.org/10.1038/nature08285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716. https://doi.org/10.1016/s0092-8674(03)00401-x

    Article  CAS  PubMed  Google Scholar 

  69. Wang B, Miyagoe-Suzuki Y, Yada E, Ito N, Nishiyama T, Nakamura M, Ono Y, Motohashi N, Segawa M, Masuda S, Takeda S (2011) Reprogramming efficiency and quality of induced Pluripotent Stem Cells (iPSCs) generated from muscle-derived fibroblasts of mdx mice at different ages. PLoS Curr 3:RRN1274. https://doi.org/10.1371/currents.RRN1274

  70. Somers A, Jean J-C, Sommer CA, Omari A, Ford CC, Mills JA, Ying L, Sommer AG, Jean JM, Smith BW, Lafyatis R, Demierre M-F, Weiss DJ, French DL, Gadue P, Murphy GJ, Mostoslavsky G, Kotton DN (2010) Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28:1728–1740. https://doi.org/10.1002/stem.495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Aït-Hamou N, Leschik J, Pellestor F, Ramirez J-M, De Vos J, Lehmann S, Lemaitre J-M (2011) Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev 25:2248–2253. https://doi.org/10.1101/gad.173922.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Trokovic R, Weltner J, Otonkoski T (2015) Generation of iPSC line HEL24.3 from human neonatal foreskin fibroblasts. Stem Cell Res 15:266–268. https://doi.org/10.1016/j.scr.2015.05.012

    Article  CAS  PubMed  Google Scholar 

  73. Qin H, Blaschke K, Wei G, Ohi Y, Blouin L, Qi Z, Yu J, Yeh R-F, Hebrok M, Ramalho-Santos M (2012) Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Hum Mol Genet 21:2054–2067. https://doi.org/10.1093/hmg/dds023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kimura T, Kaga Y, Sekita Y, Fujikawa K, Nakatani T, Odamoto M, Funaki S, Ikawa M, Abe K, Nakano T (2015) Pluripotent stem cells derived from mouse primordial germ cells by small molecule compounds. Stem Cells 33:45–55. https://doi.org/10.1002/stem.1838

    Article  CAS  PubMed  Google Scholar 

  75. Feng Y, Ning Y, Lin X, Zhang D, Liao S, Zheng C, Chen J, Wang Y, Ma L, Xie D, Han C (2018) Reprogramming p53-deficient germline stem cells into pluripotent state by Nanog. Stem Cells Dev 27:692–703. https://doi.org/10.1089/scd.2018.0047

    Article  CAS  PubMed  Google Scholar 

  76. Flurkey K, Brandvain Y, Klebanov S, Austad SN, Miller RA, Yuan R, Harrison DE (2007) PohnB6F1: a cross of wild and domestic mice that is a new model of extended female reproductive life span. J Gerontol A Biol Sci Med Sci 62:1187–1198. https://doi.org/10.1093/gerona/62.11.1187

    Article  PubMed  Google Scholar 

  77. Tiemann U, Sgodda M, Warlich E, Ballmaier M, Schöler HR, Schambach A, Cantz T (2011) Optimal reprogramming factor stoichiometry increases colony numbers and affects molecular characteristics of murine induced pluripotent stem cells. Cytom Part J Int Soc Anal Cytol 79:426–435. https://doi.org/10.1002/cyto.a.21072

    Article  CAS  Google Scholar 

  78. Pan G, Li J, Zhou Y, Zheng H, Pei D (2006) A negative feedback loop of transcription factors that controls stem cell pluripotency and self-renewal. FASEB J Off Publ Fed Am Soc Exp Biol 20:1730–1732. https://doi.org/10.1096/fj.05-5543fje

    Article  CAS  Google Scholar 

  79. Pan G, Thomson JA (2007) Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 17:42–49. https://doi.org/10.1038/sj.cr.7310125

    Article  CAS  PubMed  Google Scholar 

  80. Papapetrou EP, Tomishima MJ, Chambers SM, Mica Y, Reed E, Menon J, Tabar V, Mo Q, Studer L, Sadelain M (2009) Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proc Natl Acad Sci USA 106:12759–12764. https://doi.org/10.1073/pnas.0904825106

    Article  PubMed  PubMed Central  Google Scholar 

  81. Oka M, Moriyama T, Asally M, Kawakami K, Yoneda Y (2013) Differential role for transcription factor Oct4 nucleocytoplasmic dynamics in somatic cell reprogramming and self-renewal of embryonic stem cells. J Biol Chem 288:15085–15097. https://doi.org/10.1074/jbc.M112.448837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moraveji S-F, Attari F, Shahverdi A, Sepehri H, Farrokhi A, Hassani S-N, Fonoudi H, Aghdami N, Baharvand H (2012) Inhibition of glycogen synthase kinase-3 promotes efficient derivation of pluripotent stem cells from neonatal mouse testis. Hum Reprod 27:2312–2324. https://doi.org/10.1093/humrep/des204

    Article  CAS  PubMed  Google Scholar 

  83. Choi WY, Jeon HG, Chung Y, Lim JJ, Shin DH, Kim JM, Ki BS, Song S-H, Choi S-J, Park K-H, Shim SH, Moon J, Jung SJ, Kang HM, Park S, Chung HM, Ko JJ, Cha KY, Yoon TK, Kim H, Lee DR (2013) Isolation and characterization of novel, highly proliferative human CD34/CD73-double-positive testis-derived stem cells for cell therapy. Stem Cells Dev 22:2158–2173. https://doi.org/10.1089/scd.2012.0385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Simon L, Ekman GC, Kostereva N, Zhang Z, Hess RA, Hofmann M-C, Cooke PS (2009) Direct transdifferentiation of stem/progenitor spermatogonia into reproductive and nonreproductive tissues of all germ layers. Stem Cells 27:1666–1675. https://doi.org/10.1002/stem.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Boulanger CA, Mack DL, Booth BW, Smith GH (2007) Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proc Natl Acad Sci U S A 104:3871–3876. https://doi.org/10.1073/pnas.0611637104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang H, Hao D, Liu C, Huang D, Chen B, Fan H, Liu C, Zhang L, Zhang Q, An J, Zhao J (2019) Generation of functional dopaminergic neurons from human spermatogonial stem cells to rescue parkinsonian phenotypes. Stem Cell Res Ther 10:195. https://doi.org/10.1186/s13287-019-1294-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None of the authors have any conflicts of interest to disclose, and all authors support the submission to this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Skutella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Conrad, S., Azizi, H., Amirian, M., Hatami, M., Skutella, T. (2022). New Insights in Spermatogonial Stem Cells. In: Virant-Klun, I. (eds) Stem Cells in Reproductive Tissues and Organs. Stem Cell Biology and Regenerative Medicine, vol 70. Humana, Cham. https://doi.org/10.1007/978-3-030-90111-0_6

Download citation

Publish with us

Policies and ethics