Skip to main content

The Two-Distance Sets in Dimension Four

  • Conference paper
  • First Online:
Discrete and Computational Geometry, Graphs, and Games (JCDCGGG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13034))

  • 272 Accesses

Abstract

A finite set of vectors \(\mathcal {X}\) in the d-dimensional Euclidean space \(\mathbb {R}^d\) is called a 2-distance set, if the set of mutual distances between distinct elements of \(\mathcal {X}\) has cardinality exactly 2. In this note we report, among other things, the results of a computer-aided enumeration of the 2-distance sets in \(\mathbb {R}^4\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott, J., Bigatti, A.M.: CoCoALib: a C++ library for doing Computations in Commutative Algebra (2018). http://cocoa.dima.unige.it/cocoalib, ver. 0.99560

  2. Bannai, E., Bannai, E., Stanton, D.: An upper bound for the cardinality of an \(s\)-distance subset in real Euclidean space, II. Combinatorica 3, 147–152 (1983)

    Article  MathSciNet  Google Scholar 

  3. Bannai, E., Sato, T., Shigezumi, J.: Maximal \(m\)-distance sets containing the representation of the Johnson graph \(J(n, m)\). Discret. Math. 312, 3283–3292 (2012)

    Article  MathSciNet  Google Scholar 

  4. Becker, T., Weispfenning, V.: Gröbner Bases. Springer, New York (1993)

    Book  Google Scholar 

  5. Einhorn, S.J., Schoenberg, I.J.: On Euclidean sets having only two distances between points I-II. Indag. Math. 69, 479–504 (1966)

    Article  Google Scholar 

  6. Erdős, P., Fishburn, P.: Maximum planar sets that determine \(k\) distances. Discret. Math. 160, 115–125 (1996)

    Article  MathSciNet  Google Scholar 

  7. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  8. Jafari, A., Amin, A.N.: On the Erdős distance conjecture in geometry. Open J. Discret. Math. 6, 109–160 (2016)

    Article  Google Scholar 

  9. Lan, W., Wei, X.: Classification of seven-point four-distance sets in the plane. Math. Notes 93, 510–522 (2013)

    Article  MathSciNet  Google Scholar 

  10. Larman, D.G., Rogers, C.A., Seidel, J.J.: On two-distance sets in Euclidean space. Bull. Lond. Math. Soc. 9(3), 261–267 (1977)

    Article  MathSciNet  Google Scholar 

  11. Lisoněk, P.: New maximal two-distance sets. J. Combin. Theory Ser. A 77, 318–338 (1997)

    Article  MathSciNet  Google Scholar 

  12. Musin, O.R.: Graphs and spherical two-distance sets. Eur. J. Combin. 80, 311–325 (2019)

    Article  MathSciNet  Google Scholar 

  13. Musin, O.R.: Spherical two-distance sets. J. Combin. Theory Ser. A 116, 988–995 (2009)

    Article  MathSciNet  Google Scholar 

  14. Musin, O.R.: Towards a proof of the 24-cell conjecture. Acta Math. Hungar. 155(1), 184–199 (2018). https://doi.org/10.1007/s10474-018-0828-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Neumaier, A.: Distance matrices, dimension, and conference graphs. Indag. Math. 84, 385–391 (1981)

    Article  MathSciNet  Google Scholar 

  16. Nozaki, H., Shinohara, M.: A geometrical characterization of strongly regular graphs. Linear Algebra Appl. 437, 2587–2600 (2012)

    Article  MathSciNet  Google Scholar 

  17. Palásti, I.: Lattice-point examples for a question of Erdős. Period. Math. Hungar. 20, 231–235 (1989)

    Article  MathSciNet  Google Scholar 

  18. Rankin, R.A.: The closest packing of spherical caps in \(n\) dimensions. Glasg. Math. J. 2, 139–144 (1955)

    MathSciNet  MATH  Google Scholar 

  19. Roy, A.: Minimal Euclidean representation of graphs. Discret. Math. 310, 727–733 (2010)

    Article  MathSciNet  Google Scholar 

  20. Shinohara, M.: Classification of three-distance sets in two dimensional Euclidean space. Eur. J. Combin. 25, 1039–1058 (2004)

    Article  MathSciNet  Google Scholar 

  21. Szöllősi, F., Östergård, P.R.J.: Constructions of maximum few-distance sets in Euclidean spaces. Electron. J. Combin. 27 #P1.23 (2020)

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Academy of Finland, Grant #289002.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

A Tables of Data

A Tables of Data

In the tables the vectorization (i.e., row-wise concatenation) of the lower triangular part of a graph adjacency matrix of order n is denoted by a string of letters a and b of length \(n(n-1)/2\), where letter a indicates adjacent vertices. The ordered pair \((a^*,b^*)\) indicates the values for which the matrix \(G(a^*,b^*)\) is positive semidefinite.

Table 2. Spherical 2-distance sets on \(n\in \{8,9,10\}\) points in \(\mathbb {R}^4\)
Table 3. Spherical 2-distance sets on \(n=7\) points in \(\mathbb {R}^4\)
Table 4. Spherical 2-distance sets on \(n=6\) points in \(\mathbb {R}^4\)
Table 5. Examples of spherical 2-distance sets on \(n=5\) points in \(\mathbb {R}^4\)
Table 6. General (nonspherical) 2-distance sets on \(n\in \{7,8,9\}\) points in \(\mathbb {R}^4\)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szöllősi, F. (2021). The Two-Distance Sets in Dimension Four. In: Akiyama, J., Marcelo, R.M., Ruiz, MJ.P., Uno, Y. (eds) Discrete and Computational Geometry, Graphs, and Games. JCDCGGG 2018. Lecture Notes in Computer Science(), vol 13034. Springer, Cham. https://doi.org/10.1007/978-3-030-90048-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90048-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90047-2

  • Online ISBN: 978-3-030-90048-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics