Skip to main content

Electrokinetic-Assisted Bioremediation and Phytoremediation for the Treatment of Polluted Soil

  • Chapter
  • First Online:
Advances in Bioremediation and Phytoremediation for Sustainable Soil Management

Abstract

The contamination of soil from heavy metals (HMs), petroleum hydrocarbons (PHCs), and pesticides have become a serious environmental problem in the current world. The pollution has resulted from anthropogenic activities, rapid industrialization, and urbanization. Pesticides are used extensively in farming activities to meet the increasing demand for food and feed. The pollutants change the physicochemical and microbiological characteristics of soil and have mutagenic, carcinogenic, immunotoxic, and teratogenic effects on human health. There is an urgent necessity for sustainable and eco-friendly remediation technologies for the elimination of contaminants from soil. Electrokinetic-assisted remediation (EKR) is an opportune technology for complete remediation of polluted soil including fine-grained soils, which are typically difficult to clean-up using traditional bioremediation and phytoremediation approaches because of several drawbacks. Electrokinetic-Assisted Bioremediation (EKBR) and Electrokinetic-Assisted Phytoremediation (EKPR) are novel and effective technologies for soil remediation which decontaminate heavy metal, remove PHCs and pesticides from polluted soils. This chapter emphasizes electrokinetic-assisted remediation, current development, process, field applications, advantages, disadvantages, and further prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aboughalma H, Bi R, Schlaak M (2008) Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants. J Environ Sci Health A 43(8):926–933

    Article  CAS  Google Scholar 

  • Acar YB, Alshawabkeh AN (1993) Principle of electrokinetic remediation. Environ Sci Technol 27(13):2638–2647

    Article  CAS  Google Scholar 

  • Acosta-Santoyo G, Cameselle C, Bustos E (2017) Electrokinetic-enhanced ryegrass cultures in soils polluted with organic and inorganic compounds. Environ Res 158:118–125

    Article  CAS  PubMed  Google Scholar 

  • Agnew K, Cundy AB, Hopkinson L, Croudace IW, Warwick PE, Purdie P (2011) Electrokinetic remediation of plutonium-contaminated nuclear site wastes: results from a pilot-scale on-site trial. J Hazard Mater 186(2–3):1405–1414

    Google Scholar 

  • Ahmad I, Imran M, Hussain M, Hussain S (2017) Remediation of organic and inorganic pollutants from soil: the role of plant-bacteria partnership. In: Anjum NA (ed) Chemical pollution control with microorganisms. Nova Sci Publisher, pp 197–243

    Google Scholar 

  • Ait Ahmed O (2020) The removal efficiency of lead from contaminated soil: modeling of cations and anions migration during the electrokinetic treatment. J Environ Sci Health A 55(10):1218–1232

    Article  CAS  Google Scholar 

  • Ajiboye TO, Oyewo OA, Onwudiwe DC (2021) Simultaneous removal of organics and heavy metals from industrial wastewater: a review. Chemosphere 262:128379

    Google Scholar 

  • Alcantara MT, Gomez J, Pazos M, Sanroman MA (2009) PAHs soil decontamination in two steps: desorption and electrochemical treatment. J Hazard Mater 166:462–468

    Article  CAS  PubMed  Google Scholar 

  • Alcantara MT, Gomez J, Pazos M, Sanroman MA (2010) Electrokinetic remediation of PAH mixtures from kaolin. J Hazard Mater 179(1–3):1156–1160

    Article  CAS  PubMed  Google Scholar 

  • Alcantara MT, Gomez J, Pazos M, Sanroman MA (2012) Electrokinetic remediation of lead and phenanthrene polluted soils. Geoderma 173:128–133

    Article  Google Scholar 

  • Alshawabkeh AN (2009) Electrokinetic soil remediation: challenges and opportunities. Sep Sci Technol 44(10):2171–2187

    Article  CAS  Google Scholar 

  • Ammami MT, Benamar A, Wang H, Bailleul C, Legras M, Le Derf F, Portet-Koltalo F (2014) Simultaneous electrokinetic removal of polycyclic aromatic hydrocarbons and metals from a sediment using mixed enhancing agents. Int J Environ Sci Technol 11(7):1801–1816

    Article  CAS  Google Scholar 

  • Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science 348(6235):1261071

    Article  PubMed  Google Scholar 

  • Andrade DC, dos Santos EV (2020) Combination of electrokinetic remediation with permeable reactive barriers to remove organic compounds from soils. Curr Opin Electrochem 22:136–144

    Article  CAS  Google Scholar 

  • Annamalai S, Santhanam M, Sundaram M, Curras MP (2014) Electrokinetic remediation of inorganic and organic pollutants in textile effluent contaminated agricultural soil. Chemosphere 117:673–678

    Article  CAS  PubMed  Google Scholar 

  • Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR (2005) Phytoremediation—an overview. CRC Crit Rev Plant Sci 24(2):109–122

    Article  CAS  Google Scholar 

  • Azhar ATS, Nabila ATA, Nurshuhaila MS, Zaidi E, Azim MAM, Farhana SMS (2016) Assessment and comparison of electrokinetic and electrokinetic-bioremediation techniques for mercury contaminated soil. IOP Conf Ser Mater Sci Eng 160(1): 012077

    Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180

    Article  PubMed  PubMed Central  Google Scholar 

  • Baek K, Kim DH, Park SW, Ryu BG, Bajargal T, Yang JS (2009) Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. J Hazard Mater 161:457–462

    Article  CAS  PubMed  Google Scholar 

  • Bakulski KM, Seo YA, Hickman RC, Brandt D, Vadari HS, Hu H, Park SK (2020) Heavy metals exposure and Alzheimer’s disease and related dementias. J Alzheimer’s Dis 76(4):1215–1242

    Article  CAS  Google Scholar 

  • Bessaim MM, Karaca O, Missoum H, Bendani K, Laredj N, Bekkouche MS (2020) Effect of imposed electrical gradient on removal of toxic salt contaminants from alkali-saline low permeable soil during electrokinetic remediation. Arab J Geosci 13(14):666

    Article  CAS  Google Scholar 

  • Beyrami H, Neyshabouri MR, Oustan S (2020) Effects of different treatments and time on electrokinetic remediation of Cd, Pb and Zn from a Calcareous Contaminated Soil. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2020.09.011

  • Bi R, Schlaak M, Siefert E, Lord R, Connolly H (2011) Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere 83(3):318–326

    Article  CAS  PubMed  Google Scholar 

  • Biscombe CJC (2017) The discovery of electrokinetic phenomena: setting the record straight. Angew Chemie Int Ed 56(29):8338–8340

    Article  CAS  Google Scholar 

  • Boudh S, Singh JS (2019) Pesticide contamination: environmental problems and remediation strategies. In: Bharagava R, Chowdhary P (eds) Emerging and eco-friendly approaches for waste management. Springer, Singapore

    Google Scholar 

  • Burca N, Watson RR (2014) Fish oil supplements, contaminants, and excessive doses. In: Watson RR, De Meester F (eds) Omega-3 fatty acids in brain and neurological health. Academic Press, Boston, pp 447–454

    Google Scholar 

  • Cameselle C, Chirakkara RA, Reddy KR (2013) Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93(4):626–636

    Article  CAS  PubMed  Google Scholar 

  • Cameselle C, Gouveia S (2018) Electrokinetic remediation for the removal of organic contaminants in soils. Curr Opin Electrochem 11:41–47

    Article  CAS  Google Scholar 

  • Cameselle C, Gouveia S (2019) Physicochemical methods for the remediation of radionuclide contaminated sites. In: Gupta D, Voronina A (eds) Remediation measures for radioactively contaminated areas. Springer, Cham, pp 31–49

    Google Scholar 

  • Cang L, Wang QY, Zhou DM, Xu H (2011) Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard. Sep Purif Technol 79(2):246–253

    Article  CAS  Google Scholar 

  • Cang L, Zhou DM, Wang QY, Fan GP (2012) Impact of electrokinetic-assisted phytoremediation of heavy metal contaminated soil on its physicochemical properties, enzymatic and microbial activities. Electrochim Acta 86:41–48

    Article  CAS  Google Scholar 

  • Cercato M, De Donno G (2020) Time-lapse monitoring of an electrokinetic soil remediation process through frequency-domain electrical measurements. J Appl Geophys 175:103980

    Google Scholar 

  • Chen F, Li X, Ma J, Qu J, Yang Y, Zhang S (2019) Remediation of soil co-contaminated with decabromodiphenyl ether (BDE-209) and copper by enhanced electrokinetics-persulfate process. J Hazard Mater 369:448–455

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zhu BK, Jia WF, Liang JH, Sun GX (2015) Can electrokinetic removal of metals from contaminated paddy soils be powered by microbial fuel cells? Environ Technol Innov 3:63–67

    Article  CAS  Google Scholar 

  • Chilingar GV, Loo WW, Khilyuk LF, Katz SA (1997) Electrobioremediation of soils contaminated with hydrocarbons and metals: progress report. Energ Sour 19(2):129–146

    Article  CAS  Google Scholar 

  • Chirakkara R, Reddy KR (2013) Investigation of plant species for phytoremediation of mixed contaminants in soils. In: Proceedings of 106th annual conference and exhibition, air and waste management association, Chicago, IL, USA pp 1–12

    Google Scholar 

  • Chirakkara RA, Cameselle C, Reddy KR (2016) Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Rev Environ Sci Bio/technol 15(2):299–326

    Article  CAS  Google Scholar 

  • Chirakkara RA, Reddy KR, Cameselle C (2015) Electrokinetic amendment in phytoremediation of mixed contaminated soil. Electrochim Acta 181:179–191

    Article  CAS  Google Scholar 

  • Colacicco A, De Gioannis G, Muntoni A, Pettinao E, Polettini A, Pomi R (2010) Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs. Chemosphere 81:46–56

    Article  CAS  PubMed  Google Scholar 

  • Cong Y, Ye Q, Wu Z (2005) Electrokinetic behavior of chlorinated phenols in soil and their electrochemical degradation. Process Saf Environ 83(2):178–183

    Article  CAS  Google Scholar 

  • Couto N, Guedes P, Ribeiro AB, Zhou DM (2015) Phytoremediation and the electrokinetic process: potential use for the phytoremediation of antimony and arsenic. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer, Cham, pp 199–209

    Chapter  Google Scholar 

  • Crognale S, Cocarta DM, Streche C, D’Annibale A (2020) Development of laboratory-scale sequential electrokinetic and biological treatment of chronically hydrocarbon-impacted soils. N Biotechnol 58:38–44

    Article  CAS  PubMed  Google Scholar 

  • Daghan H, Ozturk M (2015) Soil pollution in Turkey and remediation methods. In: Soil remediation and plants: prospects and challenges, pp 287–312

    Google Scholar 

  • De Battisti A, Ferro S (2007) Electrokinetic remediation. Methods of remediation of soils and ground waters (EREM 2005). Electrochim Acta 52(10):3345–3348

    Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31

    Article  CAS  PubMed  Google Scholar 

  • Dhaliwal SS, Singh J, Taneja PK, Mandal A (2020) Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environ Sci Pollut Res 27:1319–1333

    Article  Google Scholar 

  • Dzionek A, Wojcieszynska D, Guzik U (2016) Natural carriers in bioremediation: a review. Electron J Biotechnol 23:28–36

    Article  Google Scholar 

  • Ekta P, Modi NR (2018) A review of phytoremediation. J Pharmacogn Phytochem 7(4):1485–1489

    CAS  Google Scholar 

  • Etim EE (2012) Phytoremediation and its mechanisms: a review. Int J Environ Bioenerg 2(3):120–136

    Google Scholar 

  • Feng NX, Yu J, Zhao HM, Cheng YT, Mo CH, Cai QY, Li YW, Li H, Wong MH (2017) Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Sci Total Environ 583:352–368

    Article  CAS  PubMed  Google Scholar 

  • Fu R, Wen D, Xia X, Zhang W, Gu Y (2017) Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes. Chem Eng J 316:601–608

    Article  CAS  Google Scholar 

  • Gidudu B, Chirwa EMN (2020) The combined application of a high voltage, low electrode spacing, and biosurfactants enhances the bio-electrokinetic remediation of petroleum contaminated soil. J Clean Prod 143:332–339

    CAS  Google Scholar 

  • Gidudu B, Chirwa EMN (2020) Application of biosurfactants and pulsating electrode configurations as potential enhancers for electrokinetic remediation of petrochemical contaminated soil. Sustain 12(14):5613

    Article  CAS  Google Scholar 

  • Gill RT, Harbottle MJ, Smith JWN, Thornton SF (2014) Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications. Chemosphere 107:31–42

    Article  CAS  PubMed  Google Scholar 

  • Gnanasundar VM, Akshai Raj R (2020) Remediation of inorganic contaminants in soil using electrokinetics, phytoremediation techniques. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.03.038

  • Goldscheider N (2010) Delineation of spring protection zones. In: Kresic N, Stevanovic Z (eds) Groundwater hydrology of springs. Butterworth-Heinemann, Boston, pp 305–338

    Chapter  Google Scholar 

  • Gomiero T (2016) Soil degradation, land scarcity and food security: reviewing a complex challenge. Sustain 8(3):281

    Article  Google Scholar 

  • Gonzini O, Plaza A, Di Palma L, Lobo MC (2010) Electrokinetic remediation of gasoil contaminated soil enhanced by rhamnolipid. J Appl Electrochem 40:1239–1248

    Article  CAS  Google Scholar 

  • Gustave W, Yuan Z, Liu F, Chen Z (2020) Mechanisms and challenges of microbial fuel cells for soil heavy metal(loid)s remediation. Sci Total Environ 143865

    Google Scholar 

  • Habibul N, Hu Y, Sheng GP (2016) Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils. J Hazard Mater 318:9–14

    Article  CAS  PubMed  Google Scholar 

  • Hassan I, Mohamedelhassan E, Yanful EK (2015) Solar powered electrokinetic remediation of Cu polluted soil using a novel anode configuration. Electrochim Acta 181:58–67

    Article  CAS  Google Scholar 

  • Hassan I, Mohamedelhassan E, Yanful EK, Yuan ZC (2016) A review article: electrokinetic bioremediation current knowledge and new prospects. Adv Microbiol 06(01):57–72

    Article  Google Scholar 

  • Hassan I, Mohamedelhassan E, Yanful EK, Yuan Z-C (2018) Enhancement of bioremediation and phytoremediation using electrokinetics. In: Shiomi N (ed) Advances in bioremediation and phytoremediation. IntechOpen, pp 169–189

    Google Scholar 

  • Head NA, Gerhard JI, Inglis AM, Nunez Garcia A, Chowdhury AIA, Reynolds DA, de Boer CV, Sidebottom A, Austrins LM, Eimers J, O’Carroll DM (2020) Field test of electrokinetically-delivered thermally activated persulfate for remediation of chlorinated solvents in clay. Water Res 183:116061

    Google Scholar 

  • Hu QH, Weng JQ, Wang JS (2010) Sources of anthropogenic radionuclides in the environment: a review. J Environ Radioact 101(6):426–437

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Tang J, Niu Z, Giesy JP (2019) Interactions between electrokinetics and rhizoremediation on the remediation of crude oil-contaminated soil. Chemosphere 229:418–425

    Article  CAS  PubMed  Google Scholar 

  • Hussein AA, Alatabe MJA (2019) Remediation of lead-contaminated soil, using clean energy in combination with electro-kinetic methods. Pollution 5(4):859–869

    CAS  Google Scholar 

  • Isosaari P, Piskonen R, Ojala P, Voipio S, Eilola K, Lehmus E, Itavaara M (2007) Integration of electrokinetics and chemical oxidation for the remediation of creosote-contaminated clay. J Hazard Mater 144(1–2):538–548

    Article  CAS  PubMed  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamari S, Embong Z, Bakar I (2014) Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX. AIP Conf Proc 584:221–227

    Article  Google Scholar 

  • Jamil N, Madun A, Ahmad Tajudin SA, Embong Z (2015) An overview of electrokinetic remediation assisted phytoremediation to remediate barren acidic soil. Appl Mech Mater 773–774:1476–1480

    Article  Google Scholar 

  • Jeon CS, Yang JS, Kim KJ, Baek K (2010) Electrokinetic removal of petroleum hydrocarbon from residual clayey soil following a washing process, vol 38. CLEAN-Soil, Air, Water, pp 189–193

    Google Scholar 

  • Jeon EK, Ryu SR, Baek K (2015) Application of solar-cells in the electrokinetic remediation of As-contaminated soil. Electrochim Acta 181:160–166

    Article  CAS  Google Scholar 

  • Jiradecha C, Urgun-Demirtas M, Pagilla K (2006) Enhanced electrokinetic dissolution of naphthalene and 2,4-DNT from contaminated soils. J Hazard Mater 136:61–67

    Article  CAS  PubMed  Google Scholar 

  • Kanianska R (2016) Agriculture and its impact on land‐use, environment, and ecosystem services. In: Almusaed A (ed) Landscape ecology—the influences of land use and anthropogenic impacts of landscape creation. IntechOpen, Rijeka

    Google Scholar 

  • Karaca O, Cameselle C, Bozcu M (2019) Opportunities of electrokinetics for the remediation of mining sites in Biga peninsula, Turkey. Chemosphere 227:606–613

    Article  CAS  PubMed  Google Scholar 

  • Khan MAI, Biswas B, Smith E, Naidu R, Megharaj M (2018) Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil—a review. Chemosphere 212:755–767

    Article  CAS  PubMed  Google Scholar 

  • Khan NT, Jameel N, Khan MJ (2018) A brief overview of contaminated soil remediation methods. Biotechnol Ind J 14(4):171

    Google Scholar 

  • Khodadoust AP, Reddy KR, Maturi K (2005) Effect of different extraction agents on metal and organic contaminant removal from a field soil. J Hazard Mater 117:15–24

    Article  CAS  PubMed  Google Scholar 

  • Kim BK, Baek K, Ko SH, Yang JW (2011) Research and field experiences on electrokinetic remediation in South Korea. Sep Purif Technol 79(2):116–123

    Article  CAS  Google Scholar 

  • Kim D, Han J (2020) Remediation of multiply contaminated ground via permeable reactive barrier and electrokinetic using recyclable food scrap Ash (FSA). Appl Sci 10(4):1194

    Article  CAS  Google Scholar 

  • Kim GN, Jung YH, Lee JJ, Moon JK, Jung CH (2008) An analysis of a flushing effect on the electrokinetic-flushing removal of cobalt and cesium from a soil around decommissioning site. Sep Purif Technol 63:116–121

    Article  CAS  Google Scholar 

  • Kim GN, Lee SS, Shon DB, Lee KW, Chung US (2010) Development of pilot-scale electrokinetic remediation technology to remove 60Co and 137Cs from soil. J Ind Eng Chem 16:986–991

    Article  CAS  Google Scholar 

  • Kim KH, Kim SO, Lee CW, Lee MH, Kim KW (2003) Electrokinetic processing for the removal of radionuclides in soils. Sep Purif Technol 38:2137–2163

    CAS  Google Scholar 

  • Kim SJ, Park JY, Lee YJ, Lee JY, Yang JW (2005) Application of a new electrolyte circulation method for the ex situ electrokinetic bioremediation of a laboratory-prepared pentadecane contaminated kaolinite. J Hazard Mater 118(1–3):171–176

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Han SJ, Cho YS (2002) Electrokinetic remediation strategy considering ground strate: a review. Geosci J 6(1):57–75

    Article  Google Scholar 

  • Kimbel HJ, Nilsson EE, Skinner MK (2019) Environmentally induced epigenetic transgenerational inheritance of Ovarian disease. In: Leung PCK, Adashi EY (eds) The ovary, 3rd ed. Academic Press, pp 149–154

    Google Scholar 

  • Klouche F, Bendani K, Benamar A, Missoum H, Maliki M, Laredj N (2020) Electrokinetic restoration of local saline soil. Mater Today Proc 22(1):64–68

    Article  CAS  Google Scholar 

  • Klouche F, Bendani K, Benamar A, Missoum H, Maliki M, Mesrar (2020b) Contribution to the remediation of saline soils by electrokinetic process: experimental study. In: Reddy KR, Agnihotri AK, Yukselen-Aksoy Y, Dubey BK, Bansal A (eds) Sustainable environmental geotechnics. Lecture notes in civil engineering, vol 89. Springer, Cham, pp 151–160

    Google Scholar 

  • Kolosov AY, Popov KI, Shabanova NA, Artem’eva AA, Kogut BM, Frid AS, Zel’venskii VY, Urinovich EM (2001) Electrokinetic removal of hydrophobic organic compounds from soil. Russ J Appl Chem 74:631–635

    Google Scholar 

  • Kumar A, Schreiter IJ, Wefer-Roehl A, Tsechansky L, Schuth C, Graber ER (2016) Production and utilization of biochar from organic wastes for pollutant control on contaminated sites. In: Prasad MNV, Shih K (eds) Environmental materials and waste. Academic Press, pp 91–116

    Google Scholar 

  • Lacatusu AR, Cocarta D, Lacatusu R (2013) Ex-situ bioremediation efficiency in removing organic and inorganic compounds from artificially and anthropogenic contaminated soils. Carpathian J Earth Environ Sci 8(1):59–70

    Google Scholar 

  • Lageman R, Clarke RL, Pool W (2005) Electro-reclamation, a versatile soil remediation solution. Eng Geol 77(3–4):191–201

    Article  Google Scholar 

  • Lajayer AB, Moghadam KN, Maghsoodi MR, Ghorbanpour M, Kariman K (2019) Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environ Sci Pollut Res 26(9):8468–8484

    Article  Google Scholar 

  • Lee JY, Kwon TS, Park JY, Choi S, Kim EJ, Lee HU, Lee YC (2016) Electrokinetic (EK) removal of soil co-contaminated with petroleum oils and heavy metals in three-dimensional (3D) small-scale reactor. Process Saf Environ 99:186–193

    Article  CAS  Google Scholar 

  • Li J, Li R, Li J (2017) Current research scenario for microcystins biodegradation—a review on fundamental knowledge, application prospects and challenges. Sci Total Environ 595:615–632

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang J, Larson SL, Ballard JH, Guo K, Arslan Z, Ma Y, Waggoner CA, White JR, Han FX (2019) Electrokinetic-enhanced phytoremediation of uranium-contaminated soil using sunflower and Indian mustard. Int J Phytoremediation 21(12):1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Li Z (2018) Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: an analysis. J Environ Manage 205:163–173

    Article  CAS  PubMed  Google Scholar 

  • Lima AT, Hofmann A, Reynolds D, Ptacek CJ, Van Cappellen P, Ottosen LM, Pamukcu S, Alshawabekh A, O’Carroll DM, Riis C, Cox E, Gent DB, Landis R, Wang J, Chowdhury AIA, Secord EL, Sanchez-Hachair A (2017) Environmental electrokinetics for a sustainable subsurface. Chemosphere 181:122–133

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Guo C, Zhang H, Liang X, Wei Y, Lu G, Dang Z (2016) Electrokinetic-enhanced remediation of phenanthrene-contaminated soil combined with sphingomonas sp. GY2B and biosurfactant. Appl Biochem Biotechnol 178:1325–1338

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  PubMed  Google Scholar 

  • Llorente I, Fajardo S, Bastidas JM (2014) Applications of electrokinetic phenomena in materials science. J Solid State Electrochem 18:293–307

    Article  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518

    Article  CAS  PubMed  Google Scholar 

  • Lombi E, Hamon RE (2005) Remediation of polluted soils. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, pp 379–385

    Chapter  Google Scholar 

  • Lu Q (2020) Insights into the remediation of cadmium-pyrene co-contaminated soil by electrokinetic and the influence factors. Chemosphere 254:126861

    Google Scholar 

  • Lukman S, Essa MH, Mu’azu ND, Bukhari A (2013) Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil. Sci World J 2013:346910

    Google Scholar 

  • Luo Q, Zhang X, Wang H, Qian Y (2005) The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil. J Hazard Mater 121(1–3):187–194

    Article  CAS  PubMed  Google Scholar 

  • Manz M, Wenzel KD, Dietze U, Schüürmann G (2001) Persistent organic pollutants in agricultural soils of central Germany. Sci Total Environ 277:187–198

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Han FX, Shao X, Guo K, McComb J, Arslan Z, Zhang Z (2016) Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotoxicol Environ Saf 125:16–24

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Shao X, Zhang Z (2019) Pilot-scale electro-kinetic remediation of lead polluted field sediments: model designation, numerical simulation, and feasibility evaluation. Environ Sci Eur 31:25

    Article  Google Scholar 

  • Martin BC, George SJ, Price CA, Ryan MH, Tibbett M (2014) The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci Total Environ 472:642–653

    Article  CAS  PubMed  Google Scholar 

  • Maturi K, Khodadoust AP, Reddy KR (2008) Comparison of extractants for removal of lead, zinc, and phenanthrene from manufactured gas plant field soil. Prac Periodical Hazardous Toxic Radioactive Waste Manag 12(4):230–238

    Article  CAS  Google Scholar 

  • Maturi K, Reddy KR (2008) Cosolvent-enhanced desorption and transport of heavy metals and organic contaminants in soils during electrokinetic remediation. Water Air Soil Pollut 189(1–4):199–211

    Article  CAS  Google Scholar 

  • Meshalkin VP, Shulayev NS, Pryanichnikova VV (2020) Experimental and theoretical engineering of energy-efficient electrochemical process of soil remediation to remove oil contaminants. Dokl Chem 491(2):61–64

    Article  CAS  Google Scholar 

  • Mohamadi S, Saeedi M, Mollahosseini A (2019) Enhanced electrokinetic remediation of mixed contaminants from a high buffering soil by focusing on mobility risk. J Environ Chem Eng 7:103470

    Google Scholar 

  • Moosavi SG, Seghatoleslami MJ (2013) Advance in agriculture and biology phytoremediation: a review. Adv Agri Biol 1:5–11

    Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosavat N, Oh E, Chai G (2012) A review of electrokinetic treatment technique for improving the engineering characteristics of low permeable problematic soils. Int J GEOMATE 2(2):266–272

    Google Scholar 

  • Ni M, Tian S, Huang Q, Yang Y (2018) Electrokinetic-Fenton remediation of organochlorine pesticides from historically polluted soil. Environ Sci Pollut Res Int 25(12):12159–12168

    Google Scholar 

  • O’Connor CS, Lepp NW, Edwards R, Sunderland G (2003) The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: a laboratory-scale feasibility study. Environ Monit Assess 84(1–2):141–158

    Article  PubMed  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Article  PubMed  PubMed Central  Google Scholar 

  • Ottosen LM, Larsen TH, Jensen PE, Kirkelund GM, Kerrn-Jespersen H, Tuxen N, Hyldegaard BH (2019) Electrokinetics applied in remediation of subsurface soil contaminated with chlorinated ethenes—a review. Chemosphere 235:113–125

    Article  CAS  PubMed  Google Scholar 

  • Palansooriya KN, Shaheen SM, Chen SS, Tsang DCW, Hashimoto Y, Hou D, Bolan NS, Rinklebe J, Ok YS (2020) Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ Int 134:105046

    Google Scholar 

  • Park SW, Lee JY, Yang JS, Kim KJ, Baek K (2009) Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc. J Hazard Mater 169:1168–1172

    Article  CAS  PubMed  Google Scholar 

  • Pham TD, Shrestha RA, Virkutyte J, Sillanpaa M (2009) Combined ultrasonication and electrokinetic remediation for persistent organic removal from contaminated kaolin. Electrochim Acta 54:1403–1407

    Article  CAS  Google Scholar 

  • Pham TD, Sillanpaa M (2020) Ultrasonic and electrokinetic remediation of low permeability soil contaminated with persistent organic pollutants. In: Sillanpaa M (ed) Advanced water treatment: electrochemical methods. Elsevier, pp 227–310

    Google Scholar 

  • Polcaro AM, Vacca A, Mascia M, Palmas S (2007) Electrokinetic removal of 2,6-dichlorophenol and diuron from kaolinite and humic acid-clay system. J Hazard Mater 148:505–512

    Article  CAS  PubMed  Google Scholar 

  • Popescu M, Rosales E, Sandu C, Meijide J, Pazos M, Lazar G, Sanromán MA (2017) Soil flushing and simultaneous degradation of organic pollutants in soils by electrokinetic-Fenton treatment. Process Saf Environ Prot 108:99–107

    Article  CAS  Google Scholar 

  • Punia T, Singh A (2018) Electrossmotic flow and electroosmosis in soil. Int J Chem Stud 6(2):708–711

    Google Scholar 

  • Purkis JM, Tucknott A, Croudace IW, Warwick PE, Cundy AB (2020) Enhanced electrokinetic remediation of nuclear fission products in organic-rich soils. Appl Geochem 104826

    Google Scholar 

  • Rai PK, Kim KH, Lee SS, Lee JH (2020) Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci Total Environ 705:135858

    Google Scholar 

  • Rajendran K, Pujari L, Ethiraj K (2021) Biodegradation and bioremediation of S-triazine herbicides. In: Gothandam KM, Ranjan S, Dasgupta N, Lichtfouse E (eds) Environmental biotechnology, vol. 3. Environmental chemistry for a sustainable world. Springer, Cham, pp 31–54

    Google Scholar 

  • Rajindiran S, Dotaniya ML, Coumar MV, Panwar NR, Saha JK (2015) Heavy metal polluted soils in India: status and countermeasures. JNKVV Res J 49(3):320–337

    Google Scholar 

  • Ramadan BS, Sari GL, Rosmalina RT, Effendi AJ, Hadrah (2018) An overview of electrokinetic soil flushing and its effect on bioremediation of hydrocarbon contaminated soil. J Environ Manage 218:309–321

    Google Scholar 

  • Reddy KR, Ala PR, Sharma S, Kumar SN (2006) Enhanced electrokinetic remediation of contaminated manufactured gas plant soil. Eng Geol 85:132–146

    Article  Google Scholar 

  • Ren X, Zeng G, Tang L, Wang J, Wan J, Liu Y, Yu J, Yi H, Ye S, Deng R (2018) Sorption, transport and biodegradation—an insight into bioavailability of persistent organic pollutants in soil. Sci Total Environ 610–611:1154–1163

    Article  PubMed  Google Scholar 

  • Reuss FF (1809) Charge-induced flow. Proc Imp Soc Nat Moscow 1809(3):327–344

    Google Scholar 

  • Ricart MT, Pazos M, Gouveia S, Cameselle C, Sanroman MA (2008) Removal of organic pollutants and heavy metals in soils by electrokinetic remediation. J Environ Sci Health A 43:871–875

    Article  CAS  Google Scholar 

  • Risco C, Rubi-Juarez H, Rodrigo S, Lopez Vizcaíno R, Saez C, Canizares P, Barrera-Diaz C, Navarro V, Rodrigo MA (2016) Removal of oxyfluorfen from spiked soils using electrokinetic fences. Sep Purif Technol 167:55–62

    Article  CAS  Google Scholar 

  • Saberi N, Aghababaei M, Ostovar M, Mehrnahad H (2018) Simultaneous removal of polycyclic aromatic hydrocarbon and heavy metals from an artificial clayey soil by enhanced electrokinetic method. J Environ Manag 217:897–905

    Article  CAS  Google Scholar 

  • Saeedi M, Li LY, Moradi Gharehtapeh A (2013) Effect of alternative electrolytes on enhanced electrokinetic remediation of hexavalent chromium in clayey soil. Int J Environ Res 7(1):39–50

    CAS  Google Scholar 

  • Sanchez V, Lopez-Bellido FJ, Rodrigo MA, Fernandez FJ, Rodriguez L (2020) A mesocosm study of electrokinetic-assisted phytoremediation of atrazine-polluted soils. Sep Purif Technol 233:116044

    Google Scholar 

  • Sarankumar RK, Selvi A, Murugan K, Rajasekar A (2020) Electrokinetic (EK) and bio-electrokinetic (BEK) remediation of hexavalent chromium in contaminated soil using alkalophilic bio-anolyte. Indian Geotech J 50(3):330–338

    Article  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41

    Article  CAS  PubMed  Google Scholar 

  • Schell LM, Knutson KL, Bailey S (2012) Environmental effects on growth. In: Cameron N, Bogin B (eds) Human growth and development, 2nd ed, pp 245–286

    Google Scholar 

  • Selvi A, Rajasekar A, Theerthagiri J, Ananthaselvam A, Sathishkumar K, Madhavan J, Rahman PKSM (2019) Integrated remediation processes toward heavy metal removal/recovery from various environments—a review. Front Environ Sci 7:66

    Article  Google Scholar 

  • Sharma S, Singh B, Manchanda VK (2014) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut R 22(2):946–962

    Article  Google Scholar 

  • Shaw G, Bell JNB (1994) Plants and radionuclides. In: Farago ME (ed) Plants and chemical elements, biochemistry, uptake, tolerance and toxicity. VCH Publishers, Weinheim (Federal Republic of Germany), pp 179–220

    Google Scholar 

  • Shrivastava A, Ghosh D, Dash A, Bose S (2015) Arsenic contamination in soil and sediment in india: sources, effects, and remediation. Curr Pollut Reports 1:35–46

    Article  CAS  Google Scholar 

  • Shu J, Sun X, Liu R, Liu Z, Wu H, Chen M, Li B (2019) Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents. Ecotoxicol Environ Saf 171:523–529

    Article  CAS  PubMed  Google Scholar 

  • Singh C, Tiwari S, Singh JS (2020) Biochar: a sustainable tool in soil pollutant bioremediation. In: Bharagava R, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 475–494

    Chapter  Google Scholar 

  • Siyar R, Doulati Ardejani F, Farahbakhsh M, Norouzi P, Yavarzadeh M, Maghsoudy S (2020) Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic. Chemosphere 246:125802

    Google Scholar 

  • Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z, Zhang Y, Zhang C, Cheng M, Liu Y, Ye S, Yi H, Ren X (2017) Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int 105:43–55

    Article  CAS  PubMed  Google Scholar 

  • Sorengard M, Ahrens L, Alygizakis N, Jensen P, Gago-Ferrero P (2020) Non-target and suspect screening strategies for electrodialytic soil remediation evaluation: assessing changes in the molecular fingerprints and per- and polyfluoroalkyl substances (PFASs). J Environ Chem Eng 8:104437

    Google Scholar 

  • Souza FL, Saez C, Llanos J, Lanza MRV, Canizares P, Rodrigo MA (2016) Solar-powered electrokinetic remediation for the treatment of soil polluted with the herbicide 2,4-D. Electrochim Acta 190:371–377

    Article  CAS  Google Scholar 

  • Stojic N, Strbac S, Prokic D (2018) Soil pollution and remediation BT—handbook of environmental materials management. In: International S (ed) Hussain CM. Publishing, Cham, pp 1–34

    Google Scholar 

  • Streche C, Cocarta DM, Istrate IA, Badea AA (2018) Decontamination of Petroleum-Contaminated Soils Using the electrochemical technique: remediation degree and energy consumption. Sci Rep 8(1):3272

    Article  PubMed  PubMed Central  Google Scholar 

  • Sturman PJ, Stewart PS, Cunningham AB, Bouwer EJ, Wolfram JH (1995) Engineering scale-up of in situ bioremediation processes: a review. J Contam Hydrol 19(3):171–203

    Article  CAS  Google Scholar 

  • Szpyrkowicz L, Radaelli M, Bertini S, Daniele S, Casarin F (2007) Simultaneous removal of metals and organic compounds from a heavily polluted soil. Electrochim Acta 52(10):3386–3392

    Article  CAS  Google Scholar 

  • Tahmasbian I, Safari Sinegani AA (2016) Improving the efficiency of phytoremediation using electrically charged plant and chelating agents. Environ Sci Pollut Res 23(3):2479–2486

    Article  CAS  Google Scholar 

  • Tang J, He J, Tang H, Wang H, Sima W, Liang C, Qiu Z (2020) Heavy metal removal effectiveness, flow direction and speciation variations in the sludge during the biosurfactant-enhanced electrokinetic remediation. Sep Purif Technol 246:116918

    Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Exp Suppl 101:133–164

    PubMed  Google Scholar 

  • Thangavel P, Subbhuraam C (2004) Phytoextraction: role of hyperaccumulators in metal contaminated soils. Proc Indian Natl Sci Acad 70:109–130

    CAS  Google Scholar 

  • Truu J, Truu M, Espenberg M, Nolvak H, Juhanson J (2015) Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review. Open Biotechnol J 9(1):85–92

    Article  Google Scholar 

  • Tu YJ, Premachandra GS, Boyd SA, Sallach JB, Li H, Teppen BJ, Johnston CT (2021) Synthesis and evaluation of Fe3O4-impregnated activated carbon for dioxin removal. Chemosphere 263:128263

    Google Scholar 

  • Tuomisto HL, Scheelbeek PFD, Chalabi Z, Green R, Smith RD, Haines A, Dangour AD (2017) Effects of environmental change on agriculture, nutrition and health: a framework with a focus on fruits and vegetables. Wellcome Open Res 2:21

    PubMed  PubMed Central  Google Scholar 

  • Ugaz A, Puppala S, Gale RJ, Acar YB (1994) Electrokinetic soil processing complicating features of electrokinetic remediation of soils and slurries: saturation effects and the role of the cathode electrolysis. Chem Eng Commun 129:183–200

    Article  CAS  Google Scholar 

  • Upcraft T, Guo M (2020) Phytoremediation value chains and modeling. In: Hou D (ed) Sustainable remediation of contaminated soil and groundwater. Butterworth-Heinemann, pp 325–366

    Chapter  Google Scholar 

  • Valdovinos V, Monroy-Guzmán F, Bustos E (2016) Electrokinetic removal of radionuclides contained in scintillation liquids absorbed in soil type Phaeozem. J Environ Radioact 162–163:80–86

    Article  PubMed  Google Scholar 

  • Varjani SJ, Upasani VN (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegrad 120:71–83

    Article  CAS  Google Scholar 

  • Virkutyte J, Sillanpaa M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289(1–3):97–121

    Article  CAS  Google Scholar 

  • Vocciante M, Caretta A, Bua L, Bagatin R, Ferro S (2016) Enhancements in electrokinetic remediation technology: environmental assessment in comparison with other configurations and consolidated solutions. Chem Eng J 289:123–134

    Article  CAS  Google Scholar 

  • Wall S (2010) The history of electrokinetic phenomena. Curr Opin Colloid Interface Sci 15(3):119–124

    Article  CAS  Google Scholar 

  • Wang Y, Li A, Cui C (2020) Remediation of heavy metal-contaminated soils by electrokinetic technology: Mmechanisms and applicability. Chemosphere 265:129071

    Google Scholar 

  • Wen D, Fu R, Li Q (2021) Removal of inorganic contaminants in soil by electrokinetic remediation technologies: a review. J Hazard Mater 401:123345

    Google Scholar 

  • Wick LY, Mattle PA, Wattiau P, Harms H (2004) Electrokinetic transport of PAH-degrading bacteria in model aquifers and soil. Environ Sci Technol 38(17):4596–4602

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Jiao S, Ma M, Peng S (2020) Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation. Environ Sci Pollut Res 27(7):6749–6764

    Article  CAS  Google Scholar 

  • Wu Y, Wang S, Cheng F, Guo P, Guo S (2020b) Enhancement of electrokinetic-bioremediation by ryegrass: sustainability of electrokinetic effect and improvement of n-hexadecane degradation. Environ Res 188:109717

    Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Notices 2011:1–20

    Google Scholar 

  • Xiao J, Zhou S, Chu L, Liu Y, Li J, Zhang J, Tian L (2020) Electrokinetic remediation of uranium(VI)-contaminated red soil using composite electrolyte of citric acid and ferric chloride. Environ Sci Pollut Res Int 27:4478–4488

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Liu C, Hsu PC, Zhao J, Wu T, Tang J, Liu K, Cui Y (2019) Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nat Commun 10(1):2440

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan L, Le Q Van, Sonne C, Yang Y, Yang H, Gu H, Ma NL, Lam SS, Peng W (2021) Phytoremediation of radionuclides in soil, sediments and water. J Hazard Mater 407:124771

    Google Scholar 

  • Yang X, Zhou M, Cang L, Ji Q, Xie J (2020) Enhanced electrokinetic remediation of heavy-metals contaminated soil in presence tetrasodium N, N-bis(carboxymethyl) glutamic acid (GLDA) as chelator. Int J Electrochem Sci 15:696–709

    Article  CAS  Google Scholar 

  • Yao W, Cai Z, Sun S, Romantschuk M, Sinkkonen A, Sun Y, Wang Q (2020) Electrokinetic-enhanced remediation of actual arsenic-contaminated soils with approaching cathode and Fe0 permeable reactive barrier. J Soils Sediments 20:1526–1533

    Article  CAS  Google Scholar 

  • Yeung AT (2006) Contaminant extractability by electrokinetics. Environ Eng Sci 23(1):202–224

    Article  CAS  Google Scholar 

  • Yoo JC, Yang JS, Jeon EK, Baek K (2015) Enhanced-electrokinetic extraction of heavy metals from dredged harbor sediment. Environ Sci Pollut Res 22(13):9912–9921

    Article  CAS  Google Scholar 

  • Yuan L, Xu X, Li H, Wang N, Guo N, Yu H (2016) Development of novel assisting agents for the electrokinetic remediation of heavy metal-contaminated kaolin. Electrochim Acta 218:140–148

    Article  CAS  Google Scholar 

  • Zhang S, Zhang J, Cheng X, Mei Y, Hu C, Wang M, Li J (2015) Electrokinetic remediation of soil containing Cr(VI) by photovoltaic solar panels and a DC-DC converter. J Chem Technol Biotechnol 90(4):693–700

    Article  CAS  Google Scholar 

  • Zhao S, Fan L, Zhou M, Zhu X, Li X (2016) Remediation of copper contaminated kaolin by electrokinetics coupled with permeable reactive barrier. Procedia Environ Sci 31:274–279

    Article  Google Scholar 

  • Zheng XJ, Blais JF, Mercier G, Bergeron M, Drogui P (2007) PAH removal from spiked municipal wastewater sewage sludge using biological, chemical and electrochemical treatments. Chemosphere 68(6):1143–1152

    Article  CAS  PubMed  Google Scholar 

  • Zhou DM, Deng CF, Cang L (2004) Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere 56(3):265–273

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Xu J, Lv S, Liu Z, Liu W (2020) Removal of cadmium in contaminated kaolin by new-style electrokinetic remediation using array electrodes coupled with permeable reactive barrier. Sep Purif Technol 239:116544

    Google Scholar 

  • Zhu YG, Shaw G (2000) Soil contamination with radionuclides and potential remediation. Chemosphere 41(1–2):121–128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Director, Research & Development, Biyani Group of Colleges, Jaipur for support and encouragement.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumawat, T.K. et al. (2022). Electrokinetic-Assisted Bioremediation and Phytoremediation for the Treatment of Polluted Soil. In: Malik, J.A. (eds) Advances in Bioremediation and Phytoremediation for Sustainable Soil Management. Springer, Cham. https://doi.org/10.1007/978-3-030-89984-4_24

Download citation

Publish with us

Policies and ethics