Skip to main content

Abstract

Radioactive substances are widely used in different sectors including industries, agriculture, energy sector, food industries, and medical sector for the improvement of mankind’s lifestyle. The major sources of radioactive substances are nuclear weapon production and testing, industrial processes like smelting of metals, mining, and research laboratories. Due to the excessive use of these substances in industries and other sectors, they contaminate the soil as well as water resources. The management of these contaminants is challenging as radioactive substance required certain time for decaying. Therefore, it is necessary to use some environment friendly methods for the removal of these contaminants from soil for the betterment of human. Among various techniques, phytoremediation is proven to be eco-friendly and realistic technique for the decontamination of radioactive contaminated sites. In this chapter, major radioactive substances, their sources, and exposure pathway in environment and major impacts on ecosystem is discussed. Further, the different remediation techniques are also highlighted, but the focus is on phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsabbagh AH, Abuqudaira TM (2017) Phytoremediation of Jordanian uranium-rich soil using Sunflower. Water Air Soil Pollut 228(6):219

    Article  Google Scholar 

  • Amano H, Sakamoto H, Shiga N, Suzuki K (2016) Method for rapid screening analysis of Sr-90 in edible plant samples collected near Fukushima, Japan. Appl Radiat Isotopes 112:131–135

    Article  CAS  Google Scholar 

  • Arshad M, Merlina G, Uzu G, Sobanska S, Sarret G, Dumat C, Silvestre J, Pinelli E, Kallerhoff J (2016) Phytoavailability of lead altered by two Pelargonium cultivars grown on contrasting lead-spiked soils. J Soils Sedim 16(2):581–591

    Google Scholar 

  • Arshad M, Naqvi N, Gul I, Yaqoob K, Bilal M, Kallerhoff J (2020) Lead phytoextraction by Pelargonium hortorum: comparative assessment of EDTA and DIPA for Pb mobility and toxicity. Sci Total Environ 748:141496

    Article  CAS  PubMed  Google Scholar 

  • ATSDR (2019) Toxicological profile for lead. US Department of Health and Human Services, Public Health Service, Atlanta, GA

    Google Scholar 

  • Bitterli C, Bañuelos GS, Schulin R (2010) Use of transfer factors to characterize uptake of selenium by plants. J Geochem Explor 107(2):206–216

    Article  CAS  Google Scholar 

  • Burger A, Weidinger M, Adlassnig W, Puschenreiter M, Lichtscheidl I (2019) Response of Arabidopsis halleri to cesium and strontium in hydroponics: extraction potential and effects on morphology and physiology. Ecotoxicol Environ Saf 184:109625

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Reeves RD, Baklanov IA, Centofanti T, Broadhurst CL, Baker AJ, Roseberg RJ (2014) Phytoremediation and phytomining: using plants to remediate contaminated or mineralized environments. In: Rajakaruna N, Boyd RS, Harris T (eds) Plant ecology and evolution in harsh environments. Nova Science Publishers Inc., Hauppauge, NY, USA, pp 365–392

    Google Scholar 

  • Comar CL, Russell RS, Wasserman RH (1957) Strontium-calcium movement from soil to man. Science 126(3272):485–492

    Article  CAS  PubMed  Google Scholar 

  • Cox MM, Battista JR (2005) Deinococcus radiodurans—the consummate survivor. Nat Rev Microbiol 3(11):882–892

    Article  CAS  PubMed  Google Scholar 

  • Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2(9):362–368

    Google Scholar 

  • Dragović S, Petrović J, Dragović R, Đorđević M, Đokić M, Gajić B (2015) The influence of edaphic factors on spatial and vertical distribution of radionuclides in soil. In: Walther C, Gupta DK (eds) Radionuclides in the environment, Springer, Cham

    Google Scholar 

  • Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249(1):167–175

    Article  CAS  Google Scholar 

  • Entry JA, Watrud LS, Reeves M (2001) Influence of organic amendments on the accumulation of 137Cs and 90Sr from contaminated soil by three grass species. Water Air Soil Pollut 126(3–4):385–398

    Article  CAS  Google Scholar 

  • Favas PJ, Pratas J, Varun M, D’Souza R, Paul MS (2014) Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Sci Total Environ 470:993–1002

    Article  PubMed  Google Scholar 

  • Fuhrmann M, Lasat MM, Ebbs SD, Kochian LV, Cornish J (2002) Plant and environment interactions. J Environ Qual 31:904–909

    Article  CAS  PubMed  Google Scholar 

  • Garnier-Laplace J, Beaugelin-Seiller K, Hinton TG (2011) Fukushima wildlife dose reconstruction signals ecological consequences 5077–5078

    Google Scholar 

  • Gul I, Manzoor M, Silvestre J, Rizwan M, Hina K, Kallerhoff J, Arshad M (2019a) EDTA-assisted phytoextraction of lead and cadmium by Pelargonium cultivars grown on spiked soil. Int J Phytoremediat 21(2):101–110

    Article  CAS  Google Scholar 

  • Gul I, Manzoor M, Hashim N, Yaqoob K, Kallerhoff J, Arshad M (2019b) Comparative effectiveness of organic and inorganic amendments on cadmium bioavailability and uptake by Pelargonium hortorum. J Soils Sediments 19(5):2346–2356

    Article  CAS  Google Scholar 

  • Gul I, Manzoor M, Hashmi I, Bhatti MF, Kallerhoff J, Arshad M (2019c) Plant uptake and leaching potential upon application of amendments in soils spiked with heavy metals (Cd and Pb). J Environ Manage 249:109408

    Article  CAS  PubMed  Google Scholar 

  • Gul I, Manzoor M, Kallerhoff J, Arshad M (2020) Enhanced phytoremediation of lead by soil applied organic and inorganic amendments: Pb phytoavailability, accumulation and metal recovery. Chemosphere 258:127405

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Chatterjee S, Datta S, Voronina AV, Walther C (2016) Radionuclides: accumulation and transport in plants. Rev Environ Contam Toxicol 241:139–160

    Google Scholar 

  • Gupta DK, Schulz W, Steinhauser G, Walther C (2018) Radiostrontium transport in plants and phytoremediation. Environ Sci Pollut Res 25(30):29996–30008

    Article  CAS  Google Scholar 

  • Hashimoto S, Ugawa S, Nanko K, Shichi K (2012) The total amounts of radioactively contaminated materials in forests in Fukushima. Japan. Sci Rep 2:416

    Article  PubMed  Google Scholar 

  • Hollósy F (2002) Effects of ultraviolet radiation on plant cells. Micron 33(2):179–197

    Article  PubMed  Google Scholar 

  • Hoseini PS, Poursafa P, Moattar F, Amin MM, Rezaei AH (2012) Ability of phytoremediation for absorption of strontium and cesium from soils using Cannabis sativa. Int J Environ Health Eng 1(1):17

    Article  Google Scholar 

  • Hu QH, Weng JQ, Wang JS (2010) Sources of anthropogenic radionuclides in the environment: a review. J Environ Radioact 101(6):426–437

    Article  CAS  PubMed  Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32(13):2004–2008

    Article  CAS  Google Scholar 

  • Jagetiya B, Sharma A, Soni A, Khatik UK (2014) Phytoremediation of radionuclides: a report on the state of the art. Radionuclide contamination and remediation through plants. Springer, Cham, pp 1–31

    Google Scholar 

  • Jolivet E, I’Haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. Nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53(3):847–851

    Article  CAS  PubMed  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants/fourth editions. CRC Taylor and Francis Group, Boca Raton 505

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18(4):355–364

    Article  CAS  PubMed  Google Scholar 

  • Khan AG (2009) Role of vetiver grass and arbuscular mycorrhizal fungi in improving crops against abiotic stresses. Salinity and water stress. Springer, Dordrecht, pp 111–116

    Chapter  Google Scholar 

  • Khan AG (2020) In situ phytoremediation of uranium contaminated soils. Phytoremediation. Springer, Cham, pp 123–151

    Chapter  Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41(1–2):197–207

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acid Res 36(21):6688–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujawa J, Zavodnik L, Zavodnik I, Buko V, Lapshyna A, Bryszewska M (2004) Effect of low-intensity (3.75–25 J/cm2) near-infrared (810 nm) laser radiation on red blood cell ATPase activities and membrane structure. J Clin Laser Med Surg 22(2):111–117

    Article  PubMed  Google Scholar 

  • Leggett RW, Williams LR, Melo DR, Lipsztein JL (2003) A physiologically based biokinetic model for cesium in the human body. Sci Total Environ 317(1–3):235–255

    Article  CAS  PubMed  Google Scholar 

  • Manzoor M, Gul I, Silvestre J, Kallerhoff J, Arshad M (2018) Screening of indigenous ornamental species from different plant families for Pb accumulation potential exposed to metal gradient in spiked soils. Soil Sediment Contam 27(5):439–453

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14(3):277–282

    Article  CAS  PubMed  Google Scholar 

  • Moogouei R, Borghei M, Tajadod G (2017) Analysis of transfer factor, anatomical changes and growth of plants during phytoremediation of cesium contaminated solutions. Impact of cesium on plants and the environment. Springer, Cham, pp 253–264

    Chapter  Google Scholar 

  • Moysich KB, Menezes RJ, Michalek AM (2002) Chernobyl-related ionising radiation exposure and cancer risk: an epidemiological review. Lancet Oncology 3(5):269–279

    Article  PubMed  Google Scholar 

  • Mukhtar A, Manzoor M, Gul I, Zafar R, Jamil HI, Niazi AK, Arshad M (2020) Phytotoxicity of different antibiotics to rice and stress alleviation upon application of organic amendments. Chemosphere 258:127353

    Google Scholar 

  • Narumi I (2003) Unlocking radiation resistance mechanisms: still a long way to go. Trends Microbio 11(9):422–425

    Article  CAS  Google Scholar 

  • Ogar A, Sjöberg V, Karlsson S (2015) Phytostabilization of uranium-containing shale residues using Hieracium pilosella. Uranium-past and future challenges. Springer, Cham, pp 425–432

    Chapter  Google Scholar 

  • Ogawa K, Fukuda T, Han J, Kitamura Y, Shiba K, Odani A (2016) Evaluation of Chlorella as a decorporation agent to enhance the elimination of radioactive strontium from body. PLoS ONE 11(2):e0148080

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogwu MC, Kerfahi D, Song H, Dong K, Seo H, Lim S, Adams JM (2019) Changes in soil taxonomic and functional diversity resulting from gamma irradiation. Sci Rep 9(1):1–13

    Article  Google Scholar 

  • Pentyala VB, Eapen S (2020) High efficiency phytoextraction of uranium using Vetiveria zizanioides L. Nash. Inter J Phytoremed 22:1–10

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Anul Rev Plant Biol 56:15–39

    Google Scholar 

  • Ren CG, Kong CC, Wang SX, Xie ZH (2019) Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Chemosphere 217:773–779

    Article  CAS  PubMed  Google Scholar 

  • Roongtanakiat N, Sudsawad P, Ngernvijit N (2010) Uranium absorption ability of sunflower, vetiver and purple guinea grass. Kasetsart J Nat Sci 44:182–190

    CAS  Google Scholar 

  • Schlumberger M, Catargi B, Borget I, Deandreis D, Zerdoud S, Bridji B, Vera P (2012) Strategies of radioiodine ablation in patients with low-risk thyroid cancer. New Engl J Med 366(18):1663–1673

    Article  CAS  PubMed  Google Scholar 

  • Scotti IA, Carini F (2000) Heavy metal effect on uptake and translocation of 134Cs and 85Sr in aubergine plants. J Environ Radioact 48(2):183–190

    Article  CAS  Google Scholar 

  • Shahandeh H, Hossner LR (2002) Enhancement of uranium phytoaccumulation from contaminated soils. Soil Sci 167(4):269–280

    Article  CAS  Google Scholar 

  • Shtangeeva I, Ayrault S (2004) Phytoextraction of thorium from soil and water media. Water Air Soil Pollut 154:19–35

    Google Scholar 

  • Steinhauser G, Brandl A, Johnson TE (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ 470:800–817

    Article  PubMed  Google Scholar 

  • Stojanović MD, Stevanović DR, Milojković JV, Grubišić MS, Ileš DA (2010) Phytotoxic effect of the uranium on the growing up and development the plant of corn. Water Air Soil Pollut 209(1–4):401–410

    Article  Google Scholar 

  • Tawalbeh AA, Samat SB, Yasir MS (2013) Radionuclides level and its radiation hazard index in some drinks consumed in the central zone of Malaysia. Sains Malaysiana 42(3):319–323

    CAS  Google Scholar 

  • Ten Hoeve JE, Jacobson MZ (2012) Worldwide health effects of the Fukushima Daiichi nuclear accident. Energy Environ Sci 5(9):8743–8757

    Article  Google Scholar 

  • Tsukada H, Hasegawa H, Hisamatsu SI, Yamasaki SI (2002) Transfer of 137Cs and stable Cs from paddy soil to polished rice in Aomori, Japan. J Environ Radioact 59(3):351–363

    Article  CAS  Google Scholar 

  • Valldor P, Miethling-Graff R, Martens R, Tebbe CC (2015) Fate of the insecticidal Cry1Ab protein of GM crops in two agricultural soils as revealed by 14 C-tracer studies. Appl Microbiol Biotechnol 99(17):7333–7734

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen C, Wang J (2017) Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system. Int J Phytoremed 19(4):402–412

    Article  CAS  Google Scholar 

  • White P, Broadley M (2000) Mechanisms of caesium uptake by plants. New Phytol 147:241–256

    Google Scholar 

  • White PJ, Bowen HC, Demidchik V, Nichols C, Davies JM (2002) Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim Biophys Acta Biomembr 1564(2):299–309

    Article  CAS  Google Scholar 

  • Yan L, Van Le Q, Sonne C, Yang Y, Yang H, Gu H, Peng W (2020) Phytoremediation of radionuclides in soil, sediments and water. J Hazard Mater 407:124771

    Article  PubMed  Google Scholar 

  • Yoschenko V, Nanba K, Yoshida S, Watanabe Y, Takase T, Sato N, Keitoku K (2016) Morphological abnormalities in Japanese red pine (Pinus densiflora) at the territories contaminated as a result of the accident at Fukushima Dai-Ichi Nuclear Power Plant. J Environ Radioact 165:60–67

    Article  CAS  PubMed  Google Scholar 

  • Yoschenko V, Ohkubo T, Kashparov V (2018) Radioactive contaminated forests in Fukushima and Chernobyl. J Forest Res 23(1):3–14

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iram Gul or Imran Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gul, I., Ahmad, I., Shah, G.M. (2022). Phytoremediation of Radioactive Contaminated Sites. In: Malik, J.A. (eds) Advances in Bioremediation and Phytoremediation for Sustainable Soil Management. Springer, Cham. https://doi.org/10.1007/978-3-030-89984-4_11

Download citation

Publish with us

Policies and ethics