Skip to main content

Recent Approaches for Enhancing Corrosion Resistance of PEO/MAO-Coated Mg and Its Alloys

  • Chapter
  • First Online:
Conversion Coatings for Magnesium and its Alloys

Abstract

Plasma electrolytic oxidation (PEO) or micro-arc oxidation (MAO) coatings on magnesium and its alloys have gained increased attention in the past decade for their versatility. Unfortunately, due to their porous nature, they only provide short-term protection against corrosion of magnesium and its alloys. Hence, these coatings depend on other techniques for enhancing their corrosion protection efficiency. Particularly, effective sealing of the pores in the PEO/MAO coatings seems to be the research focus in recent years. This chapter discusses about the different techniques and advances made in improving the performance of PEO/MAO coatings on magnesium and its alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alabbasi, A., Liyanaarachchi, S., & Kannan, M. B. (2012). Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy. Thin Solid Films, 520, 6841–6844.

    Article  CAS  Google Scholar 

  • Alabbasi, A., Kannan, M. B., Walter, R., Störmer, M., & Blawert, C. (2013). Performance of pulsed constant current silicate-based PEO coating on pure magnesium in simulated body fluid. Materials Letters, 106, 18–21.

    Article  CAS  Google Scholar 

  • Alabbasi, A., Kannan, M. B., & Blawert, C. (2014a). Dual layer inorganic coating on magnesium for delaying the biodegradation for bone fixation implants. Materials Letters, 124, 188–191.

    Article  CAS  Google Scholar 

  • Alabbasi, A., Mehjabeen, A., Kannan, M. B., Ye, Q., & Blawert, C. (2014b). Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study. Applied Surface Science, 301, 463–467.

    Article  CAS  Google Scholar 

  • An, L., Ma, Y., Sun, L., Wang, Z., & Wang, S. (2020). Investigation of mutual effects among additives in electrolyte for plasma electrolytic oxidation on magnesium alloys. Journal of Magnesium and Alloys, 8, 523–536.

    Article  CAS  Google Scholar 

  • Arrabal, R., Matykina, E., Hashimoto, T., Skeldon, P., & Thompson, G. E. (2009). Characterization of AC PEO coatings on magnesium alloys. Surface and Coating Technology, 203, 2207–2220.

    Article  CAS  Google Scholar 

  • Azarian, N., & Mousavi Khoei, S. M. (2021). Characteristics of a multi-component MgO-based bioceramic coating synthesized in-situ by plasma electrolytic oxidation. Journal of Magnesium and Alloys. https://doi.org/10.1016/j.jma.2020.12.018

  • Baloch, A., & Kannan, M. B. (2017). Electropolymerisation of aniline on AZ91 magnesium alloy: The effect of coating electrolyte corrosiveness. Metals, 7, 533.

    Article  CAS  Google Scholar 

  • Betts, J. C. (2010). Chapter 13 – Laser surface modification of aluminium and magnesium alloys. In H. Dong (Ed.), Surface engineering of light alloys (pp. 444–474). Woodhead Publishing.

    Chapter  Google Scholar 

  • Blawert, C., Sah, S. P., Liang, J., Huang, Y., & Höche, D. (2012). Role of sintering and clay particle additions on coating formation during PEO processing of AM50 magnesium alloy. Surface and Coating Technology, 213, 48–58.

    Article  CAS  Google Scholar 

  • Blawert, C., Sah, S. P., Scharnagl, N., & Kannan, M. B. (2015). Chapter 8 – Plasma electrolytic oxidation/micro-arc oxidation of magnesium and its alloys. In Surface Modification of Magnesium and its Alloys for Biomedical Applications (pp. 193–234). Woodhead Publishing.

    Chapter  Google Scholar 

  • Castellanos, A., Altube, A., Vega, J. M., García-Lecina, E., Díez, J. A., & Grande, H. J. (2015). Effect of different post-treatments on the corrosion resistance and tribological properties of AZ91D magnesium alloy coated PEO. Surface and Coating Technology, 278, 99–107.

    Article  CAS  Google Scholar 

  • Chen, Y., Yang, Y., Zhang, W., Zhang, T., & Wang, F. (2017). Influence of second phase on corrosion performance and formation mechanism of PEO coating on AZ91 Mg alloy. Journal of Alloys and Compounds, 718, 92–103.

    Article  CAS  Google Scholar 

  • Chen, J., Lin, W., Liang, S., Zou, L., Wang, C., Wang, B., Yan, M., & Cui, X. (2019). Effect of alloy cations on corrosion resistance of LDH/MAO coating on magnesium alloy. Applied Surface Science, 463, 535–544.

    Article  CAS  Google Scholar 

  • Cui, X.-J., Lin, X.-Z., Liu, C.-H., Yang, R.-S., Zheng, X.-W., & Gong, M. (2015). Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy. Corrosion Science, 90, 402–412.

    Article  CAS  Google Scholar 

  • Cui, X.-J., Ping, J., Zhang, Y.-J., Jin, Y.-Z., & Zhang, G.-A. (2017). Structure and properties of newly designed MAO/TiN coating on AZ31B Mg alloy. Surface and Coating Technology, 328, 319–325.

    Article  CAS  Google Scholar 

  • da Silva Rodrigues, J., Marasca Antonini, L., da Cunha Bastos, A. A., Zhou, J., & de Fraga Malfatti, C. (2021). Corrosion resistance and tribological behavior of ZK30 magnesium alloy coated by plasma electrolytic oxidation. Surface and Coating Technology, 410, 126983.

    Article  CAS  Google Scholar 

  • Daroonparvar, M., Yajid, M. A. M., Yusof, N. M., & Bakhsheshi-Rad, H. R. (2016). Preparation and corrosion resistance of a nanocomposite plasma electrolytic oxidation coating on Mg-1%Ca alloy formed in aluminate electrolyte containing titania nano-additives. Journal of Alloys and Compounds, 688, 841–857.

    Article  CAS  Google Scholar 

  • Durdu, S., & Usta, M. (2012). Characterization and mechanical properties of coatings on magnesium by micro arc oxidation. Applied Surface Science, 261, 774–782.

    Article  CAS  Google Scholar 

  • Fattah-Alhosseini, A., & Joni, M. S. (2015). Effect of KOH concentration on the microstructure and electrochemical properties of MAO-coated Mg alloy AZ31B. Journal of Materials Engineering and Performance, 24, 3444–3452.

    Article  CAS  Google Scholar 

  • Fattah-alhosseini, A., Chaharmahali, R., & Babaei, K. (2020). Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review. Journal of Magnesium and Alloys, 8, 799–818.

    Article  CAS  Google Scholar 

  • Gao, Y., Yerokhin, A., & Matthews, A. (2013). DC plasma electrolytic oxidation of biodegradable cp-Mg: In-vitro corrosion studies. Surface and Coating Technology, 234, 132–142.

    Article  CAS  Google Scholar 

  • Gao, Y., Yerokhin, A., & Matthews, A. (2014). Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings. Applied Surface Science, 316, 558–567.

    Article  CAS  Google Scholar 

  • Gawel, L., Nieuzyla, L., Nawrat, G., Darowicki, K., & Slepski, P. (2017). Impedance monitoring of corrosion degradation of plasma electrolytic oxidation coatings (PEO) on magnesium alloy. Journal of Alloys and Compounds, 722, 406–413.

    Article  CAS  Google Scholar 

  • Ghali, E. (2000). Corrosion and protection of magnesium alloys. Materials Science Forum, 350–351, 261–272.

    Article  Google Scholar 

  • Ghali, E., Dietzel, W., & Kainer, K.-U. (2004). General and localized corrosion of magnesium alloys: A critical review. Journal of Materials Engineering and Performance, 13, 7–23.

    Article  CAS  Google Scholar 

  • Ghasemi, A., Raja, V., Blawert, C., Dietzel, W., & Kainer, K. (2008). Study of the structure and corrosion behavior of PEO coatings on AM50 magnesium alloy by electrochemical impedance spectroscopy. Surface and Coating Technology, 202, 3513–3518.

    Article  CAS  Google Scholar 

  • Golabadi, M., Aliofkhazraei, M., Toorani, M., & Rouhaghdam, A. S. (2017). Evaluation of La containing PEO pretreatment on protective performance of epoxy coating on magnesium. Progress in Organic Coating, 105, 258–266.

    Article  CAS  Google Scholar 

  • Gu, Y., & Chen, C.-f., Bandopadhyay, S., Ning, C., Zhang, Y. and Guo, Y. (2012). Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid. Applied Surface Science, 258, 6116–6126.

    Article  CAS  Google Scholar 

  • Hussein, R. O., Zhang, P., Nie, X., Xia, Y., & Northwood, D. O. (2011). The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62. Surface and Coating Technology, 206, 1990–1997.

    Article  CAS  Google Scholar 

  • Hussein, R. O., Northwood, D. O., & Nie, X. (2012). The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy. Journal of Alloys and Compounds, 541, 41–48.

    Article  CAS  Google Scholar 

  • Hussein, R. O., Northwood, D. O., & Nie, X. (2013). The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys. Surface and Coating Technology, 237, 357–368.

    Article  CAS  Google Scholar 

  • Hwang, I. J., Hwang, D. Y., Ko, Y. G., & Shin, D. H. (2012). Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation. Surface and Coating Technology, 206, 3360–3365.

    Article  CAS  Google Scholar 

  • Kannan, M. B. (2010). Influence of microstructure on the in-vitro degradation behaviour of magnesium alloys. Materials Letters, 64, 739–742.

    Article  CAS  Google Scholar 

  • Kannan, M. B. (2012). Enhancing the performance of calcium phosphate coating on a magnesium alloy for bioimplant applications. Materials Letters, 76, 109–112.

    Article  CAS  Google Scholar 

  • Kannan, M. B. (2013). Improving the packing density of calcium phosphate coating on a magnesium alloy for enhanced degradation resistance. Journal of Biomedical Materials Research. Part A, 101, 1248–1254.

    Article  CAS  Google Scholar 

  • Kannan, M. B. (2015a). Chapter 13 – Biodegradable polymeric coatings for surface modification of magnesium-based biomaterials. In Surface modification of magnesium and its alloys for biomedical applications (pp. 355–376). Woodhead Publishing.

    Chapter  Google Scholar 

  • Kannan, M. B. (2015b). Chapter 13 Hydroxyapatite coating on biodegradable magnesium. Hydroxyapatite (HAp) for Biomedical Applications (p. 289). Woodhead Publishing. https://doi.org/10.1016/C2013-0-16440-9

    Book  Google Scholar 

  • Kannan, M. B. (2016). Electrochemical deposition of calcium phosphates on magnesium and its alloys for improved biodegradation performance: A review. Surface and Coating Technology, 301, 36–41.

    Article  CAS  Google Scholar 

  • Kannan, M. B., & Dietzel, W. (2012). Pitting-induced hydrogen embrittlement of magnesium–aluminium alloy. Materials and Design, 42, 321–326.

    Article  CAS  Google Scholar 

  • Kannan, M. B., & Orr, L. (2011). In vitro mechanical integrity of hydroxyapatite coated magnesium alloy. Biomedical Materials, 6, 045003.

    Article  CAS  Google Scholar 

  • Kannan, M. B., & Raman, R. S. (2008a). In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials, 29, 2306–2314.

    Article  CAS  Google Scholar 

  • Kannan, M. B., & Raman, R. S. (2008b). Evaluating the stress corrosion cracking susceptibility of Mg–Al–Zn alloy in modified-simulated body fluid for orthopaedic implant application. Scripta Mater, 59, 175–178.

    Article  CAS  Google Scholar 

  • Kannan, M. B., & Wallipa, O. (2013). Potentiostatic pulse-deposition of calcium phosphate on magnesium alloy for temporary implant applications—An in vitro corrosion study. Materials Science & Engineering, C: Materials for Biological Applications, 33, 675–679.

    Article  CAS  Google Scholar 

  • Kannan, M. B., Dietzel, W., Blawert, C., Atrens, A., & Lyon, P. (2008a). Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31A) compared with AZ80. Materials Science and Engineering A, 480, 529–539.

    Article  CAS  Google Scholar 

  • Kannan, M. B., Gomes, D., Dietzel, W., & Abetz, V. (2008b). Polyoxadiazole-based coating for corrosion protection of magnesium alloy. Surface and Coating Technology, 202, 4598–4601.

    Article  CAS  Google Scholar 

  • Kannan, M. B., Walter, R., & Yamamoto, A. (2015). Biocompatibility and in vitro degradation behavior of magnesium–calcium alloy coated with calcium phosphate using an unconventional electrolyte. ACS Biomaterials Science & Engineering, 2, 56–64.

    Article  CAS  Google Scholar 

  • Kannan, M. B., Walter, R., Yamamoto, A., Khakbaz, H., & Blawert, C. (2018). Electrochemical surface engineering of magnesium metal by plasma electrolytic oxidation and calcium phosphate deposition: Biocompatibility and in vitro degradation studies. RSC Advances, 8, 29189–29200.

    Article  CAS  Google Scholar 

  • Kannan, M. B., Walter, R., Khakbaz, H., Zeng, R. C., & Blawert, C. (2020). A triple-layered hybrid coating with self-organized microporous polymer film on magnesium for biodegradable implant applications. Medical Device Sensor, 3, e10070.

    Google Scholar 

  • Kim, S.-Y., Kim, Y.-K., Ryu, M.-H., Bae, T.-S., & Lee, M.-H. (2017). Corrosion resistance and bioactivity enhancement of MAO coated Mg alloy depending on the time of hydrothermal treatment in Ca-EDTA solution. Scientific Reports, 7, 9061.

    Article  CAS  Google Scholar 

  • Koç, E., Kannan, M. B., Ãœnal, M., & Candan, E. (2015). Influence of zinc on the microstructure, mechanical properties and in vitro corrosion behavior of magnesium–zinc binary alloys. Journal of Alloys and Compounds, 648, 291–296.

    Article  CAS  Google Scholar 

  • Lee, K. M., Lee, B. U., Yoon, S. I., Lee, E. S., Yoo, B., & Shin, D. H. (2012). Evaluation of plasma temperature during plasma oxidation processing of AZ91 Mg alloy through analysis of the melting behavior of incorporated particles. Electrochimica Acta, 67, 6–11.

    Article  CAS  Google Scholar 

  • Li, X., & Luan, B. L. (2012). Discovery of Al2O3 particles incorporation mechanism in plasma electrolytic oxidation of AM60B magnesium alloy. Materials Letters, 86, 88–91.

    Article  CAS  Google Scholar 

  • Li, X., Liu, X., & Luan, B. L. (2011). Corrosion and wear properties of PEO coatings formed on AM60B alloy in NaAlO2 electrolytes. Applied Surface Science, 257, 9135–9141.

    Article  CAS  Google Scholar 

  • Li, L.-Y., Cui, L.-Y., Zeng, R.-C., Li, S.-Q., Chen, X.-B., Zheng, Y., & Kannan, M. B. (2018). Advances in functionalized polymer coatings on biodegradable magnesium alloys – A review. Acta Biomaterialia, 79, 23–36.

    Article  CAS  Google Scholar 

  • Li, C.-Y., Feng, X.-L., Fan, X.-L., Yu, X.-T., Yin, Z.-Z., Kannan, M. B., Chen, X.-B., Guan, S.-K., Zhang, J., & Zeng, R.-C. (2019a). Corrosion and wear resistance of micro-arc oxidation composite coatings on magnesium alloy AZ31—The influence of inclusions of carbon spheres. Advanced Engineering Materials, 21, 1900446.

    Article  CAS  Google Scholar 

  • Li, C.-Y., Fan, X.-L., Zeng, R.-C., Cui, L.-Y., Li, S.-Q., Zhang, F., He, Q.-K., Kannan, M. B., Jiang, H.-W., Chen, D.-C., & Guan, S.-K. (2019b). Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA. Journal of Materials Science and Technology, 35, 1088–1098.

    Article  CAS  Google Scholar 

  • Liang, J., Srinivasan, P. B., Blawert, C., Störmer, M., & Dietzel, W. (2009). Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes. Electrochimica Acta, 54, 3842–3850.

    Article  CAS  Google Scholar 

  • Liu, C., Liang, J., Zhou, J., Li, Q., Peng, Z., & Wang, L. (2016). Characterization and corrosion behavior of plasma electrolytic oxidation coated AZ91-T6 magnesium alloy. Surface and Coating Technology, 304, 179–187.

    Article  CAS  Google Scholar 

  • Liu, Y., Liu, Z., Xu, A., & Liu, X. (2021). Understanding pitting corrosion behavior of AZ91 alloy and its MAO coating in 3.5% NaCl solution by cyclic potentiodynamic polarization. Journal of Magnesium and Alloys. https://doi.org/10.1016/j.jma.2020.12.005

  • Martin, J., Nominé, A. V., Stef, J., Nominé, A., Zou, J. X., Henrion, G., & Grosdidier, T. (2019). The influence of metallurgical state of substrate on the efficiency of plasma electrolytic oxidation (PEO) process on magnesium alloy. Materials and Design, 178, 107859.

    Article  CAS  Google Scholar 

  • Mohedano, M., Blawert, C., & Zheludkevich, M. L. (2015). Silicate-based plasma electrolytic oxidation (PEO) coatings with incorporated CeO2 particles on AM50 magnesium alloy. Materials and Design, 86, 735–744.

    Article  CAS  Google Scholar 

  • Monetta, T., Parnian, P., & Acquesta, A. (2020). Recent advances in the control of the degradation rate of PEO treated magnesium and its alloys for biomedical applications. Metals, 10, 907.

    Article  CAS  Google Scholar 

  • Moon, S., Arrabal, R., & Matykina, E. (2015). 3-Dimensional structures of open-pores in PEO films on AZ31 Mg alloy. Materials Letters, 161, 439–441.

    Article  CAS  Google Scholar 

  • Mordike, B. L., & Ebert, T. (2001). Magnesium: Properties—Applications—Potential. Materials Science and Engineering A, 302, 37–45.

    Article  Google Scholar 

  • Mori, Y., Koshi, A., Liao, J., Asoh, H., & Ono, S. (2014). Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate – Silicate mixture electrolytes. Corrosion Science, 88, 254–262.

    Article  CAS  Google Scholar 

  • NÄ›mcová, A., Skeldon, P., Thompson, G. E., & Pacal, B. (2013). Effect of fluoride on plasma electrolytic oxidation of AZ61 magnesium alloy. Surface and Coating Technology, 232, 827–838.

    Article  CAS  Google Scholar 

  • Rapheal, G., Kumar, S., Blawert, C., & Dahotre, N. B. (2011). Wear behavior of plasma electrolytic oxidation (PEO) and hybrid coatings of PEO and laser on MRI 230D magnesium alloy. Wear, 271, 1987–1997.

    Article  CAS  Google Scholar 

  • Sabaghi Joni, M., & Fattah-alhosseini, A. (2016). Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy. Journal of Alloys and Compounds, 661, 237–244.

    Article  CAS  Google Scholar 

  • Saris, N.-E. L., Mervaala, E., Karppanen, H., Khawaja, J. A., & Lewenstam, A. (2000). Magnesium: An update on physiological, clinical and analytical aspects. Clinica Chimica Acta, 294, 1–26.

    Article  CAS  Google Scholar 

  • Shen, M. J., Wang, X. J., & Zhang, M. F. (2012). High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate–borax. Applied Surface Science, 259, 362–366.

    Article  CAS  Google Scholar 

  • Somasundaram, S., Ionescu, M., & Mathan, B. K. (2018). Ion implantation of calcium and zinc in magnesium for biodegradable implant applications. Metals, 8, 30.

    Article  CAS  Google Scholar 

  • Song, G., & Atrens, A. (2003). Understanding magnesium corrosion—A framework for improved alloy performance. Advanced Engineering Materials, 5, 837–858.

    Article  CAS  Google Scholar 

  • Sreekanth, D., Rameshbabu, N., & Venkateswarlu, K. (2012). Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation. Ceramics International, 38, 4607–4615.

    Article  CAS  Google Scholar 

  • Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27, 1728–1734.

    Article  CAS  Google Scholar 

  • Surmeneva, M. A., Mukhametkaliyev, T. M., Khakbaz, H., Surmenev, R. A., & Kannan, M. B. (2015). Ultrathin film coating of hydroxyapatite (HA) on a magnesium–calcium alloy using RF magnetron sputtering for bioimplant applications. Materials Letters, 152, 280–282.

    Article  CAS  Google Scholar 

  • Toulabifard, A., Rahmati, M., Raeissi, K., Hakimizad, A., & Santamaria, M. (2020). The effect of electrolytic solution composition on the structure, corrosion, and wear resistance of PEO coatings on AZ31 magnesium alloy. Coatings, 10, 937.

    Article  CAS  Google Scholar 

  • Walter, R., & Kannan, M. B. (2011). In-vitro degradation behaviour of WE54 magnesium alloy in simulated body fluid. Materials Letters, 65, 748–750.

    Article  CAS  Google Scholar 

  • Wang, X., Lu, X., Ju, P., Chen, Y., Zhang, T., & Wang, F. (2021). Influence of ZnO on thermal control property and corrosion resistance of plasma electrolytic oxidation coatings on Mg alloy. Surface and Coating Technology, 409, 126905.

    Article  CAS  Google Scholar 

  • Wilke, B. M., Zhang, L., Li, W., Ning, C., Chen, C.-F., & Gu, Y. (2016). Corrosion performance of MAO coatings on AZ31 Mg alloy in simulated body fluid vs. Earle’s Balance Salt solution. Applied Surface Science, 363, 328–337.

    Article  CAS  Google Scholar 

  • Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C. J., & Windhagen, H. (2005). In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 26, 3557–3563.

    Article  CAS  Google Scholar 

  • Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., & Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State & Materials Science, 12, 63–72.

    Article  CAS  Google Scholar 

  • Xia, Q., Li, X., Yao, Z., & Jiang, Z. (2021). Investigations on the thermal control properties and corrosion resistance of MAO coatings prepared on Mg-5Y-7Gd-1Nd-0.5Zr alloy. Surface and Coatings Technology, 409, 126874.

    Article  CAS  Google Scholar 

  • Yagi, S., Sengoku, A., Kubota, K., & Matsubara, E. (2012). Surface modification of ACM522 magnesium alloy by plasma electrolytic oxidation in phosphate electrolyte. Corrosion Science, 57, 74–80.

    Article  CAS  Google Scholar 

  • Yagi, S., Kuwabara, K., Fukuta, Y., Kubota, K., & Matsubara, E. (2013). Formation of self-repairing anodized film on ACM522 magnesium alloy by plasma electrolytic oxidation. Corrosion Science, 73, 188–195.

    Article  CAS  Google Scholar 

  • Yerokhin, A., Nie, X., Leyland, A., Matthews, A., & Dowey, S. (1999). Plasma electrolysis for surface engineering. Surface and Coating Technology, 122, 73–93.

    Article  CAS  Google Scholar 

  • Zhang, Z.-Q., Wang, L., Zeng, M.-Q., Zeng, R.-C., Kannan, M. B., Lin, C.-G., & Zheng, Y.-F. (2020). Biodegradation behavior of micro-arc oxidation coating on magnesium alloy-from a protein perspective. Bioactive Mater, 5, 398–409.

    Article  Google Scholar 

  • Zhang, W., Du, Y., & Zhang, P. (2021). Excellent plasma electrolytic oxidation coating on AZ61 magnesium alloy under ordinal discharge mode. Journal of Magnesium and Alloys. https://doi.org/10.1016/j.jma.2021.01.003

  • Zheng, X., Liu, Q., Ma, H., Das, S., Gu, Y., & Zhang, L. (2018). Probing local corrosion performance of sol-gel/MAO composite coating on Mg alloy. Surface and Coating Technology, 347, 286–296.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bobby Kannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kannan, M.B., Lenin, P., Khakbaz, H., Zeng, RC. (2022). Recent Approaches for Enhancing Corrosion Resistance of PEO/MAO-Coated Mg and Its Alloys. In: Saji, V.S., Sankara Narayanan, T.S.N., Chen, X. (eds) Conversion Coatings for Magnesium and its Alloys. Springer, Cham. https://doi.org/10.1007/978-3-030-89976-9_21

Download citation

Publish with us

Policies and ethics