Skip to main content

State Feedback Law for Discrete-Time Fractional Order Nonlinear Systems

  • Chapter
  • First Online:
Fractional Dynamical Systems: Methods, Algorithms and Applications

Abstract

The analysis of output regulation for fractional nonlinear vibration control system of a smart plate designed by using the optimal LQR controller versus a closed-loop system design based on an integer order model is presented. It is shown that if the output of a linearized fractional system can be regulated to a finite number of steps around a constant output then the output of the nonlinear fractional system can also be regulated in the same number of steps around this output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartosiewicz, Z., Pawluszewicz, E.: Realizations of linear control systems on time scales. Control Cybern. 35(4), (2006)

    Google Scholar 

  2. Zabczyk, J.: Mathematical Control Theory. Birkhäuser, Basel (2008)

    Google Scholar 

  3. Sontag, E.D.: Mathematical Control Theory. Springer (1998)

    Google Scholar 

  4. Halás, M., Kotta, Ü.: A transfer function approach to the realization problem of nonlinear systems. Int. J. Control 85(3), 320–331 (2012)

    Article  Google Scholar 

  5. Bartosiewicz, Z., Pawluszewicz, E.: Realizations of nonlinear control systems on time scales. IEEE Trans. Autom. Control 53(2), (2008)

    Google Scholar 

  6. Pawluszewicz, E.: Fractional vector-order h-realization of the impulse response function. Acta Mechanica et Automatica 14(2), 108–113 (2020)

    Article  Google Scholar 

  7. Teplajkov, A.: Fractional order Modelling and Control of Dynamic systems. Publisher Springer (2017)

    Google Scholar 

  8. Bastos, N.R.O., Ferreira, R.A.C., Torres, D.F.M.: Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dynam. Syst. 29(2), 417–437 (2011)

    Article  MathSciNet  Google Scholar 

  9. Ferreira, R.A.C., Torres, D.F.M.: Fractional h-difference equations arising from the calculus of variations. Appl. Anal. Discret. Math. 5(1), 110–121 (2011)

    Article  MathSciNet  Google Scholar 

  10. Oprzędkiewicz, K.: Fractional order, discrete model of heat transfer process using time and spatial Grünwald-Letnikov operator. Bull. Pol. Acad. Sci.: Tech. Sci. 69(1), No. e135843 (2021)

    Google Scholar 

  11. Kopka, R.: Changes in derivative orders for fractional models of supercapacitors as a function of operating temperature. IEEE Access 7(8684234), 47674–47681 (2019)

    Article  Google Scholar 

  12. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer (2008)

    Google Scholar 

  13. Ambroziak, L., Lewon, D., Pawluszewicz, E.: The use of fractional order operators in modeling of RC-electrical systems. Control. Cybern. 45(3), 275–288 (2016)

    MATH  Google Scholar 

  14. Koszewnik, A., Nartowicz, T., Pawluszewicz, E.: Fractional order controller to control pump in FESTO MPS® PA Compact Workstation. In: Proceedings of the International Carpathian Control Conference, pp. 364–367 (2016)

    Google Scholar 

  15. Oprzędkiewicz, K., Gawin, E.: A noninteger order, state space model for one dimensional heat transfer process. Arch. Control Sci. 26(2), 261–275 (2016)

    Article  MathSciNet  Google Scholar 

  16. Sierociuk, D., Dzieliński, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogenous media using fractional calculus. Philos. Trans. R. Soc. A-Math., Phys. Eng. Sci. 20120146, 371 (2013)

    Google Scholar 

  17. Mozyrska, D., Wyrwas, M.: The Z-transform method and delta type fractional difference operators. Discret. Dyn. Nat. Soc. 852734 (2015)

    Google Scholar 

  18. Mozyrska, D., Wyrwas, M., Pawluszewicz, E.: Stabilization of linear multi-parameter fractional difference control systems. In: Proceedings of the International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 315–319 (2015)

    Google Scholar 

  19. Mozyrska, D., Wyrwas, M.: Stability by linear approximation and the relation between the stability of difference and differentional fractional systems. Math. Methods Appl. Sci. (2016)

    Google Scholar 

  20. Wyrwas, M., Pawluszewicz, E., Girejko, E.: Stability of nonlinear H-difference systems with n fractional orders. Kybernetika 51(1), 112–136 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Koszewnik, A., Pawluszewicz, E., Ostaszewski, M.: Experimental studies of the fractional PID and TID controllers for industrial process. Int. J. Control Autom. Syst. accepted for publication in 2021, doi.org/https://doi.org/10.1007/s12555-020-0123-4

  22. Isidori, A.: Nonlinear Control Systems. Springer (1996)

    Google Scholar 

  23. Marino, R., Tomei, P.: Nonlinear Control Design Geometric, Adaptive and Robust. Prentice Hall (1995)

    Google Scholar 

  24. Chen, L., Narendra, K.: Identification and Control of a Nonlinear Discrete-Time System Based on its Linearization: a Unified Framework. IEEE Trans. Neural Netw. 15(3), 663–673 (2004)

    Article  Google Scholar 

  25. Mozyrska, D., Wyrwas, M., Pawluszewicz, E.: Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearization. Int. J. Syst. Sci. 48(4), 788–794 (2017)

    Article  Google Scholar 

  26. Koszewnik, A.: The Design Vibration Control System for Aluminum Plate with piezo-stripes based on residues analysis of mode. Eur. Phys. J. Plus 133, 1–15 (2018)

    Article  Google Scholar 

  27. Litak, G., Ambrożkiewicz, B., Wolszczak, P.: Dynamics of a nonlinear energy harvester with subharmonic responses. J. Phys: Conf. Ser. 1736, 1–12 (2021)

    Google Scholar 

  28. Litak, G., Margielewicz, J., Gaska, D., Wolszczak, P., Zhou, S.: Multiple Solutions of the Tristable Energy Harvester. Energies 14(5), 1–17 (2021)

    Article  Google Scholar 

  29. Czaban, J., Litak, G., Ambrożkiewicz, B., Gardynski, L., Staczek, P., Wolszczak, P.: Impact-based piezoelectric energy harvesting system excited from diesel engine suspension. Appl. Comput. Sci. 16(3), 16–29 (2020)

    Google Scholar 

  30. Mozyrska, D., Girejko, E.: Overview of the fractional h-differences operator. In: Almeida, A., Castro, L., Speck, F.O. (eds.) Advances in Harmonic Analysis and Operator Theory. Operator Theory: Advances and Applications, p. 229. Birkhäuser, Basel (2013)

    Google Scholar 

  31. Mozyrska, D., Girejko, E., Wyrwas, M.: Comparison of h-difference fractional operators. in: Theory and Application of Non-integer Order systems, LNEE 257, pp.191–197. Springer (2013)

    Google Scholar 

  32. MozyrskaD., Pawluszewicz E., Local controllability of nonlinear discrete-time fractional order systems, Bull Pol Acad Sci. Tech Sci 61(1), 251–156 (2013)

    Google Scholar 

  33. Zhu, W., Rui, X.-T.: Hysteresis modeling and displacement control of piezoelectric actuators with the frequency-dependent behavior using a generalized Bouc-Wen model. Precis. Eng. 43, 299–307 (2016)

    Article  Google Scholar 

  34. Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Nonlinear Physical Science. Springer (2011)

    Google Scholar 

  35. Koszewnik, A.: The optimal vibration control of the plate structure by using piezo-actuators. In: Proceedings of International Carpathian Control Conference, ICCC (2015), DOI:https://doi.org/10.1109/CarpathianCC.2016. 7501123

Download references

Acknowledgements

The work of A. Koszewnik and E. Pawluszewicz is supported by the University Grant no WZ/WM-IIM/1/2019 of Faculty of Mechanical Engineering, Bialystok University of Technology. The work of P. Burzynski is supported by University Grant no WI/WM-IIM/7/2020 of Faculty of Mechanical Engineering, Bialystok University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Pawłuszewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pawłuszewicz, E., Koszewnik, A., Burzynski, P. (2022). State Feedback Law for Discrete-Time Fractional Order Nonlinear Systems. In: Kulczycki, P., Korbicz, J., Kacprzyk, J. (eds) Fractional Dynamical Systems: Methods, Algorithms and Applications. Studies in Systems, Decision and Control, vol 402. Springer, Cham. https://doi.org/10.1007/978-3-030-89972-1_8

Download citation

Publish with us

Policies and ethics