Skip to main content

Fractional Systems: Theoretical Foundations

  • Chapter
  • First Online:
Fractional Dynamical Systems: Methods, Algorithms and Applications

Abstract

An overview of the fractional order integro-differential, methods and tools of fractional calculus that are commonly used in control and automation are presented. The presented results mainly concern the fractional differential operators Caputo, Riemann–Liouville and Grünwald–Letnikov, as they are some of the most used in the fields mentioned. Moreover, for zero initial value these operators coincides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akgül, A., Inc, M., Baleanu, D.: On solutions of variable-order fractional differential equations. Int. J. Optim. Control: Theor. Appl. 7(1), 112–116 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Alagoz, B.B., Tepljakov, A., Ates, A.: Time-domain identification of one noninteger order plus time delay models from step response measurements. Int. J. Model. Simul. Sci. Comput. 10(1), 1941011–1–1941011–22 (2019)

    Google Scholar 

  3. Allendoerfer, C.B.: Theorems About Differentiable Functions. Calculus of Several Variables and Differentiable Manifolds. Macmillan, New York (1974)

    MATH  Google Scholar 

  4. Almeida, R., Kamocki, R., Malinowska, A.B., Odzijewicz, T.: On the existence of optimal consensus control for the fractional Cucker-Smale model. Arch. Control Sci. 30(4), 625–651 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Ambroziak, L., Lewon, D., Pawluszewicz, E.: The use of fractional order operators in modeling of RC-electrical systems. Control Cybern. 45(3), 275–288 (2016)

    MATH  Google Scholar 

  6. Bagley, R.L., Torvik, P.J.: Fractional calculus in the transient analysis of viscoelasticity damped structures. AIAA J. 23(6), 918–925 (1985)

    Article  MATH  Google Scholar 

  7. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behaviour. J. Rheol. 30(1), 133–155 (1986)

    Article  MATH  Google Scholar 

  8. Ba̧kała, M., Duch, P., Machado, J.A.T., Ostalczyk, P., Sankowski, D.: Commensurate and non-commensurate fractional-order discrete models of an electric individual-wheel drive on an autonomous platform. Entropy 22(3) (2020). https://doi.org/10.3390/e22030300

  9. Baleanu, D., Diethelm, K., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. Nonlinearity and Chaos. World Scientific, Singapore, Series on Complexity (2012)

    Book  MATH  Google Scholar 

  10. Bandyopadhyay, B., Kamal, S.: Stabilization and Control of Fractional Order Systems: a Sliding Mode Approach. Lecture Notes in Electrical Engineering, vol. 317, pp. 55–90. Springer International Publishing, New York (2015)

    Google Scholar 

  11. Busłowicz, M.: Frequency domain method for stability analysis of linear continuous-time fractional systems. In: Malinowski, K., Rutkowski, L. (eds.) Recent Advances in Control and Automation. Academic Publishing House EXIT, Warsaw (2008)

    Google Scholar 

  12. Busłowicz, M.: Stability of linear continuous-time fractional order systems of commensurate order. J. Autom. Mob. Robot. Intell. Syst. 2, 15–21 (2009)

    Google Scholar 

  13. Busłowicz, M.: Wybrane zagadnienia z zakresu liniowych cix̧głych układów niecałowitego rzdu. Pomiary Automatyka Kontrola 2, 93–114 (2010). (in Polish)

    Google Scholar 

  14. Busłowicz, M.: Stability of continuous-time linear systems described by state equation with fractional commensurate orders of derivatives. Acta Mech. Autom. 6(4), 17–20 (2012)

    Google Scholar 

  15. Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuous Mechanics. Springer, New York (1997)

    Book  MATH  Google Scholar 

  16. Chak, A.M.: A generalization of the Mittag-Leffler function. Mat. Vesn. 19(4), 257–262 (1967)

    MathSciNet  MATH  Google Scholar 

  17. Coimbra, C.: Mechanics with variable-order differential operators. Annu. Phys. 12, 692–703 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Copot, C., Ionescu, C.M., Muresan, C.I.: Image-Based and Fractional Order Control for Mechatronic System. Theory and Applications with Matlab. Springer Publisher, New York (2020)

    Book  MATH  Google Scholar 

  19. Deng, W.: Short memory principle and a predictor-corrector approach for fractional differential equations. J. Comput. Appl. Math. 206, 174–188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Diethelm, K.: A predictor - corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ditzian, Z.: Fractional derivatives and best approximation. Acta Math. Hug. 81, 323–348 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Djennoune, S., Bettayeb, M., Al-Saggaf, U.M.: Synchronization of fractional-order discrete-time chaotic systems by an delayed reconstructor: application to secure communication. Int. J. Appl. Math. Comput. Sci. 29(1), 179–194 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dorc̆ák, L.: Numerical models for simulation the fractional-order control systems. In: UEF-04-94. The Academy of Science, Institute of Experimental Physics, Kosice, pp. 1–12 (1994)

    Google Scholar 

  25. Dorc̆ák, L., Petrás̆, G., Kos̆tial, I., Trepák, J.: Fractional-order state space models. In: International Carpathian Control Conference ICCC’, Czech Republic, pp. 193–198 (2002)

    Google Scholar 

  26. Du, M., Wang, Z.: Correcting the initialization of models with fractional derivatives via history-depend conditions. Acta Mech. Sin. 320–325 (2016)

    Google Scholar 

  27. Dzieliński, A.: Optimal control for discrete fractional systems. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds.) Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol. 407. Springer International Publishing AG, Cham, pp. 175–185 (2017)

    Google Scholar 

  28. Dzieliński, A., Sarwas, G., Sierociuk, D.: Time domain validation of ultracapacitor fractional order model. In: 49th IEEE Conference on Decision and Control DCD, pp. 3730–3735 (2010)

    Google Scholar 

  29. Evangelista, L.R., Lenzi, E.K.: (Autor): Fractional Diffusion Equations and Anomalous Diffusion. Cambridge University Press, Cambridge (2018)

    Book  MATH  Google Scholar 

  30. Farid, H.: Discrete-time fractional differentiation form integer derivatives. TR2004-528, Dartmouth College, Computer Science, pp. 1–9 (2004)

    Google Scholar 

  31. Fiedler, M.: Special Matrices and Their Applications in Numerical Mathematics. Martinus Nijhoff Publishers, Dordrecht (1986)

    Book  MATH  Google Scholar 

  32. Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26, 333–346 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gorenflo, R.: Fractional Calculus: Some Numerical Methods. CISM Courses Lect. 378, 277–290 (2001)

    MathSciNet  Google Scholar 

  34. Hartley, T.T., Lorenzo, C.F.: Control of initialized fractional-order systems. NASA/TM-2002-211377/Rev1 Raport, Glenn Research Center, pp. 1–40 (2002)

    Google Scholar 

  35. Hcheichi, K., Bouani, F.: Comparison between commensurate and non-commensurate fractional systems. Int. J. Adv. Comput. Sci. Appl. 9(11), 685–691 (2018)

    Google Scholar 

  36. Heymens, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann - Liouville fractional derivatives. Rheol. Acta 45, 765–771 (2006)

    Article  Google Scholar 

  37. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  38. Jifeng, W., Yuankai, L.: Frequency domain analysis and applications for fractional-order control systems. J. Phys.: Conf. Ser. b13, 268–273 (2005)

    Google Scholar 

  39. Kaczorek, T.: Selected Problems of Fractional System Theory. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  40. Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Studies in Systems, Decision and Control, vol. 13. Springer, Heidelberg (2015)

    Google Scholar 

  41. Kilbas, A.A., Srivastawa, H.M., Trujilo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Amsterdam (2006)

    Google Scholar 

  42. Koszewnik, A., Ostaszewski, M., Pawluszeicz, E.: Experimental studies of the fractional PID and TID controllers for industrial process. Int. J. Control Autom. Syst. 19, 1847–1862 (2021)

    Article  Google Scholar 

  43. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamical Systems. Cambridge/Academic, Cambridge (2009)

    MATH  Google Scholar 

  44. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Loverro, A.: Fractional calculus: history, definitions and applications for the engineer. Department of Aerospace and Mechanical Engineering. University of Notre Dame, USA (2004)

    Google Scholar 

  46. Lubich, C.H.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  47. Machado, J.A.T.: Theory analysis and design of fractional - order digital control systems. J. Syst. Anal. - Model. - Simul. 27, 107–122 (1997)

    Google Scholar 

  48. Matignon, D.: Stability properties for generalized fractional differential system. In: ESIM: Proceedings Fractional Differential Systems: Models, Methods and Applications, pp. 145–158 (1998)

    Google Scholar 

  49. Miller, K.S., Ross, B.: Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, Nihon University, Kōriyama, Japan Fractional Difference Calculus (1988), pp. 139–152

    Google Scholar 

  50. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  51. Momani, S., Odibat, Z.: Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207(11), 96–110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Monie, C.A., Chen, Y.Q., Vinagre, B.M., Xue, B.M., Feliu, V.: Fractional-Order Systems and Controls. Fundamentals and Applications. Advances in Industrial Control. Springer, London (2010)

    Google Scholar 

  53. Mozyrska, D., Ostalczyk, P.: Generalized Fractional-Order Discrete-Time Integrator. Complexity 2017, Article ID 3452409, 11 pp

    Google Scholar 

  54. Mozyrska, D., Ostalczyk, P.: Variable-, fractional-order oscillation element. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds.) Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol. 407, pp. 65–75. Springer International Publishing AG, Cham (2017)

    Chapter  MATH  Google Scholar 

  55. Mozyrska, D., Pawluszewicz, E.: Local controllability of nonlinear discrete-time fractional order systems. Bull. Pol. Acad. Sci. Tech. Sci. 61(1), 251–256 (2013)

    MATH  Google Scholar 

  56. Mozyrska, D., Pawluszewiczb, E., Wyrwas, M.: Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearization. Int. J. Syst. Sci. 48(4), 788–794 (2017)

    Article  MATH  Google Scholar 

  57. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic, New York (1974)

    MATH  Google Scholar 

  58. Oprzedkiwicz, K.: Fractional order, discrete model of heat transfer process using time and spatial Grünwald-Letnikov operator. Bull. Pol. Acad. Sci.: Tech. Sci. 69(1), 1–10 (2021)

    Google Scholar 

  59. Ortigueira, M.D., Bengochea, G.: Non-commensurate fractional linear systems: new results. J. Adv. Res. 25, 11–17 (2020)

    Article  Google Scholar 

  60. Osler, T.J.: Fractional derivatives and Leibniz rule. Am. Math. Mon. Taylor & Francis, Ltd 78(6), 645–649 (1971)

    Google Scholar 

  61. Ostalczyk, P.: Epitome of the fractional calculus. Theory and its applications in automatics. Publishing Department of Technical University of Lodz, Lodz (2008)

    Google Scholar 

  62. Ostalczyk, P.: Discrete Fractional Calculus. Some Applications in Control and Image Processing. Series in Computer Vision, vol. 4. World Scientific Publishing Co Pte Ltd., Singapore (2016)

    Google Scholar 

  63. Oustaloup, A.: La commande CRONE. Éditions Hermès, Paris (1991)

    MATH  Google Scholar 

  64. Oustaloup, A.: Diversity and Non-integer Differentiation for System Dynamics. Wiley, Hoboken (2014)

    Book  MATH  Google Scholar 

  65. Pawluszewicz, E., Koszewnik, A., Burzynski, P.: On Grünwald-Letnikov fractional operator with measurable order on continuous-discrete-time scale. Acta Mech. Autom. 14(3), 161–165 (2020)

    Google Scholar 

  66. Petras, I.: Fractional-Order Nonlinear Systems Modeling. Analysis and Simulation. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  67. Podlubny, I.: Fractional-Order Systems and - Controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  68. Podlubny, I.: Fractional Differential Equations. Academic, San Diego (1999)

    MATH  Google Scholar 

  69. Poty, A., Melchior, P., Oustaloup, A.: Dynamic path planning for mobile robot using fractional potential field. In: IEEE First International Symposium on Control, Communications and Signal Processing, pp. 557–561 (2004)

    Google Scholar 

  70. Razminia, A., Dizaji, A.F., Majda, V.J.: Solution existence for non-autonomous variable-order fractional differential equations. Math. Comput. Model. 55, 1106–1117 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  71. Ruszewski, A.: Stability of discrete-time fractional linear systems with delays. Arch. Control Sci. 29(3), 549–567 (2019)

    MathSciNet  MATH  Google Scholar 

  72. Sabatier, J., Agrawal, O., Machado, J.A.T. (eds.): Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering. Springer, London (2007)

    Google Scholar 

  73. Samko, S., Kilbas, A., Marichew, O.: Fractional Integrals and Derivatives. Theory and Applications. Gordon & Breach Sci. Publishers, New York (1987)

    Google Scholar 

  74. Shamardan, A.B., Moubarak, M.R.A.: Controllability and Observability for Fractional Control Systems. J. Fract. Calc. 15, 25–34 (1999)

    MathSciNet  MATH  Google Scholar 

  75. Si, X., Yang, H., Ivanov, I.G.: Conditions and a computation method of the constrained regulation problem for a class of fractional-order nonlinear continuous-time systems. Int. J. Appl. Math. Comput. Sci. 31(1), 17–28 (2021)

    MathSciNet  MATH  Google Scholar 

  76. Sierociuk, D., Malesza, W.: Fractional variable order discrete-time systems, their solutions and properties. Int. J. Syst. Sci. 48(14), 3098–3105 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  77. Sierociuk, D., Dzieliński, A., Sarwas, G., Petrás̆, I., Podlubny, I., Skovranek, T.: Modeling heat transfer in heterogenous media using fractional calculus. Philos. Trans. Math. Phys. Eng. Sci. 371 (2013)

    Google Scholar 

  78. Sun, H.H., Chang, A., Zhang, Y., Chen, W.: Review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Anal. 22, 27–57 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  79. Teplajkov, A.: Fractional Order Modelling and Control of Dynamic Systems. Springer, Berlin (2017)

    Book  Google Scholar 

  80. Tepljakov, A., Petlekov, E., Belikov, J.: A flexible MATLAB tool for optimal fractional-order PID controller design subject to specifications. In: Proceedings of the 31st Chinese Control Conference, pp. 4698–4703 (2012)

    Google Scholar 

  81. Traore, A., Sene, N.: Model of economic growth in the context of fractional derivative. Alex. Eng. J. 59, 4843–4850 (2020)

    Article  Google Scholar 

  82. Tuan, V.K., Gorenflo, R.: Extrapolation to the limit for numerical fractional differentiation. Z. Angew. Math. Mech. 75(8), 646–648 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  83. Valério, D., Costa, S.: Tuning-rules for fractional PID controllers. In: Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and Its Applications, Porto, pp. 89–94 (2004)

    Google Scholar 

  84. Valerio, D., da Costa, J.S.: Variable-order fractional derivatives and their numerical approximations. Signal Process. 91(3), 470–483 (2011)

    Article  MATH  Google Scholar 

  85. Wyrwas, M., Pawluszewicz, E., Girejko, E.: Stability of nonlinear H-difference systems with n fractional orders. Kybernetika 51(1), 112–136 (2015)

    MathSciNet  MATH  Google Scholar 

  86. Zhao, C., Xue, D., Chen, Y.Q.: A fractional order PID tuning algorithm for a class of fractional order plants. In: Proceedings of the IEEE, International Conference on Mechatronics & Automation, pp. 216–221 (2005)

    Google Scholar 

Download references

Acknowledgements

The work of P. Ostalczyk was supported by the National Science Centre Poland Grant Number 2016/23/B/ST7/03686. The work of E. Pawluszewicz is supported with University Work No WZ/WM-IIM/1/2019 Faculty of Mechanical Engineering, Bialystok University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Pawluszewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ostalczyk, P., Pawluszewicz, E. (2022). Fractional Systems: Theoretical Foundations. In: Kulczycki, P., Korbicz, J., Kacprzyk, J. (eds) Fractional Dynamical Systems: Methods, Algorithms and Applications. Studies in Systems, Decision and Control, vol 402. Springer, Cham. https://doi.org/10.1007/978-3-030-89972-1_2

Download citation

Publish with us

Policies and ethics