Skip to main content

Classifying the Deceptive and Truthful Responses Through Ocular Measures in an Interview Process

  • Conference paper
  • First Online:
New Perspectives in Software Engineering (CIMPS 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1416))

Included in the following conference series:

  • 386 Accesses

Abstract

Deceptive responses into an interview need more cognitive load than truthful ones. A high cognitive load is presented on working memory in lying. Cognitive load is widely measured in eye-tracking studies with ocular data as pupil dilations, blinks, saccades, and fixations. Only a few studies explore the cognitive load of memory tasks during lying conditions through ocular measures. In addition to this, there is no integration of these measures into a software model for practical implications over interviews or interrogatories, i.e., a classifier of deceptive and truthful responses. Cognitive load measures associated with the lie and truth were studied in teenagers such as the entropy of eye-fixations, saccadic peak velocity, blink frequency, and pupil size change, selecting the features with significant differences and training the Support Vector Machine (SVM) and Quadratic Discriminant Analysis (QDA) models. SVM presented 80% of accuracy and QDA the 40% for the classification of deceptive and truthful responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Salomon, G.: The differential investment of mental effort in learning from different sources. Educ. Psychol. 18(1), 42–50 (1983)

    Article  Google Scholar 

  2. Low, R.: Modality effect on learning. In: Seel, N.M. (ed.) Encyclopedia of the Sciences of Learning, pp. 2295–2298. Springer, Boston (2012). https://doi.org/10.1007/978-1-4419-1428-6_256

  3. Kun, A.L., Palinko, O., Medenica, Z., Heeman, P.A.: On the feasibility of using pupil diameter to estimate cognitive load changes for in-vehicle spoken dialogues. In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, pp. 3766–3770. International Speech and Communication Association (2013)

    Google Scholar 

  4. Lallé, S., Toker, D., Conati, C., Carenini, G.: Prediction of users’ learning curves for adaptation while using an information visualization. In: Proceedings of the 20th International Conference on Intelligent User Interfaces - IUI 2015, pp. 357–368. ACM Press, New York (2015)

    Google Scholar 

  5. Beatty, J.: Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol. Bull. 91(2), 276–292 (1982)

    Article  Google Scholar 

  6. Chen, S., Epps, J., Chen, F.: A comparison of four methods for cognitive load measurement. In: Proceedings of the 23rd Australian Computer-Human Interaction Conference, OzCHI 2011, pp. 76–79. ACM (2011)

    Google Scholar 

  7. Gavas, R.D., Tripathy, S.R., Chatterjee, D., Sinha, A.: Cognitive load and metacognitive confidence extraction from pupillary response. Cogn. Syst. Res. 52, 325–334 (2018)

    Article  Google Scholar 

  8. Szulewski, A., Roth, N., Howes, D.: The use of task-evoked pupillary response as an objective measure of cognitive load in novices and trained physicians: a new tool for the assessment of expertise. Acad. Med. 90(7), 981–987 (2015)

    Article  Google Scholar 

  9. Carson, T.L.: The definition of lying. Noûs 40(2), 284–306 (2006)

    Google Scholar 

  10. Van Gog, T., Paas, F.: Cognitive Load Measurement, pp. 599–601. Springer, Boston (2012). https://doi.org/10.1007/978-1-4419-1428-6_412

  11. Aamport, L., Aamport, L., Knuth, D.E.: The gnats and gnus document preparation system. G-Animal’s J. 41(7), 73 (1986)

    Google Scholar 

  12. Ganis, G., Kosslyn, S.M., Stose, S., Thompson, W.L., Yurgelun-Todd, D.A.: Neural correlates of different types of deception: an fMRI investigation. Cereb. Cortex 13(8), 830–836 (2003)

    Article  Google Scholar 

  13. Vrij, A., Oliveira, J., Hammond, A., Ehrlichman, H.: Saccadic eye movement rate as a cue to deceit. J. Appl. Res. Mem. Cogn. 4(1), 15–19 (2015)

    Article  Google Scholar 

  14. Nugroho, R.H., Nasrun, M., Setianingsih, C.: Lie detector with pupil dilation and eye blinks using hough transform and frame difference method with fuzzy logic. In: 2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC), pp. 40–45, September 2017

    Google Scholar 

  15. Nurcin, F.V., Imanov, E., Isin, A., Ozsahin, D.U.: Lie detection on pupil size by back propagation neural network. Procedia Comput. Sci. 120, 417–421 (2017)

    Article  Google Scholar 

  16. Webb, A.K., Honts, C.R., Kircher, J.C., Bernhardt, P., Cook, A.E.: Effectiveness of pupil diameter in a probable-lie comparison question test for deception. Legal Criminol. Psychol. 14(2), 279–292 (2009)

    Article  Google Scholar 

  17. Frosina, P., Logue, M., Book, A., Huizinga, T., Amos, S., Stark, S.: The effect of cognitive load on nonverbal behavior in the cognitive interview for suspects. Pers. Individ. Differ. 130, 51–58 (2018)

    Article  Google Scholar 

  18. Fukuda, K.: Eye blinks: new indices for the detection of deception. Int. J. Psychophysiol. 40(3), 239–245 (2001)

    Article  Google Scholar 

  19. George, S., Pai, M.M.M., Pai, R.M., Praharaj, S.K.: Eye blink count and eye blink duration analysis for deception detection. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 223–229, September 2017

    Google Scholar 

  20. Mitre-Hernandez, H., Sanchez-Rodriguez, J., Zatarain-Cabada, R., Barron-Estrada, L.: Assessing cognitive load using oculometrics to identify deceit during interviews. Appl. Cogn. Psychol. 33(2), 312–321 (2019)

    Google Scholar 

  21. Eivazi, S., Bednarik, R.: Predicting problem-solving behavior and performance levels from visual attention data. In: Proceedings of the Workshop on Eye Gaze in Intelligent Human Machine Interaction at IUI, pp. 9–16 (2011)

    Google Scholar 

  22. Biedert, R., Hees, J., Dengel, A., Buscher, G.: A robust realtime reading-skimming classifier. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 123–130 (2012)

    Google Scholar 

  23. Kunze, K., Utsumi, Y., Shiga, Y., Kise, K., Bulling, A.: I know what you are reading: recognition of document types using mobile eye tracking. In: Proceedings of the 2013 International Symposium on Wearable Computers, pp. 113–116 (2013)

    Google Scholar 

  24. Li, J., et al.: Identification and classification of construction equipment operators’ mental fatigue using wearable eye-tracking technology. Autom. Constr. 109, 103000 (2020)

    Article  Google Scholar 

  25. Deng, Q., Wang, J., Hillebrand, K., Benjamin, C.R., Söffker, D.: Prediction performance of lane changing behaviors: a study of combining environmental and eye-tracking data in a driving simulator. IEEE Trans. Intell. Transp. Syst. 21, 3561–3570 (2019)

    Article  Google Scholar 

  26. Hess, E.H., Polt, J.M.: Pupil size in relation to mental activity during simple problem-solving. Science 143, 1190–1192 (1964)

    Article  Google Scholar 

  27. Papesh, M.H., Goldinger, S.D., Hout, M.C.: Memory strength and specificity revealed by pupillometry. Int. J. Psychophysiol. 83(1), 56–64 (2012)

    Article  Google Scholar 

  28. Marandi, R.Z., Madeleine, P., Omland, Ø., Vuillerme, N., Samani, A.: Reliability of oculometrics during a mentally demanding task in young and old adults. IEEE Access 6, 17500–17517 (2018)

    Article  Google Scholar 

  29. Iqbal, S., Adamczyk, P.: Towards an index of opportunity: understanding changes in mental workload during task execution. In: Conference on Human …, pp. 311–320 (2005)

    Google Scholar 

  30. Faure, V., Lobjois, R., Benguigui, N.: The effects of driving environment complexity and dual tasking on drivers? Mental workload and eye blink behaviour. Transp. Res. Part F Traffic Psychol. Behav. 40, 78–90 (2016)

    Article  Google Scholar 

  31. Nocera, F.D., Camilli, M., Terenzi, M.: Using the distribution of eye fixations to assess pilots’ mental workload. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 50(1), 63–65 (2006)

    Article  Google Scholar 

  32. Hart, S.G.: Nasa-task load index (NASA-TLX); 20 years later. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 50(9), 904–908 (2006)

    Article  Google Scholar 

  33. Burley, D.T., Gray, N.S., Snowden, R.J.: As far as the eye can see: relationship between psychopathic traits and pupil response to affective stimuli. PloS One 12(1), e0167436 (2017)

    Article  Google Scholar 

  34. Palinko, O., Kun, A.L., Shyrokov, A., Heeman, P.: Estimating cognitive load using remote eye tracking in a driving simulator. In: Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications - ETRA 2010, p. 141. ACM Press, New York (2010)

    Google Scholar 

  35. Liu, C., Conn, K., Sarkar, N., Stone, W.: Physiology-based affect recognition for computer-assisted intervention of children with autism spectrum disorder. Int. J. Hum. Comput. Stud. 66(9), 662–677 (2008)

    Article  Google Scholar 

  36. Vapnik, V., Vapnik, V.: Statistical Learning Theory, 1. Wiley, New York (1998)

    MATH  Google Scholar 

  37. Rani, P., Liu, C., Sarkar, N., Vanman, E.: An empirical study of machine learning techniques for affect recognition in human–robot interaction. Pattern Anal. Appl. 9(1), 58–69 (2006)

    Article  Google Scholar 

  38. Chanel, G., Kierkels, J.J., Soleymani, M., Pun, T.: Short-term emotion assessment in a recall paradigm. Int. J. Hum. Comput. Stud. 67(8), 607–627 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Mitre-Hernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mitre-Hernandez, H. (2022). Classifying the Deceptive and Truthful Responses Through Ocular Measures in an Interview Process. In: Mejia, J., Muñoz, M., Rocha, Á., Avila-George, H., Martínez-Aguilar, G.M. (eds) New Perspectives in Software Engineering. CIMPS 2021. Advances in Intelligent Systems and Computing, vol 1416. Springer, Cham. https://doi.org/10.1007/978-3-030-89909-7_19

Download citation

Publish with us

Policies and ethics