Skip to main content

Information Model for Calculating the Rate of Technical Progress

  • Chapter
  • First Online:
Digital Transformation and the World Economy

Abstract

Classical models of economic growth have been modified due to new global economic trends that emerged under the influence of the large-scale digitization and robotization of today’s capitalist economy. In order to calculate prognostic dynamics of the technical progress (total factor productivity), we have provided the information model based on the use of different modes for producing technological information. The proposed model relies on the principle of forming and changing an amount of technological knowledge, Kurzweil’s law of accelerating returns (LARR) for ICT, and also particular provisions of the Isenson-Hartman model for describing informational dynamics. In addition, we have come up with the model for forecast calculations of ICT contribution into the technical progress under conditions of scarce resources. It is stated that the economic impact of digitization across economies will not occur immediately, but with a certain time lag.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, P. G., & Graves, M. (2011, October 2011). The singularity isn’t near. Technology Review Magazine. Technology Review.

    Google Scholar 

  • Barenblatt, G. I. (2003). Scaling. Cambridge University Press.

    Book  Google Scholar 

  • Barro, R. J., & Sala-i-Martin, X. (2004). Economic growth. MIT Press.

    Google Scholar 

  • Brynjolfsson, E., & Adam, S. (2010). Wired for innovation: How information technology is reshaping the economy. MIT Press.

    Google Scholar 

  • Greengard, S. (2015). The internet of things. The MIT Press.

    Book  Google Scholar 

  • Hai, Z. (2016). Creative summarization. In Multi-dimensional summarization in cyber-physical society. Elsevier.

    Google Scholar 

  • Hartman, L. M. (1966). In G. A. Steiner & W. Cannon (Eds.), Technological forecasting / Multinational corporate planning. Crowel-Collier.

    Google Scholar 

  • Hirooka, M. (2006). Innovation dynamism and economic growth. A nonlinear perspective. Edward Elgar.

    Book  Google Scholar 

  • Isenson, R. S. (1966). Technological forecasting in perspective. Management Science, 3, 70–83.

    Article  Google Scholar 

  • Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Frankfurt-Main.

    Google Scholar 

  • Kurzweil, R. (2005). The singularity is near. Viking Books.

    Google Scholar 

  • Kurzweil, R. (2012). How to create a mind: The secret of human thought revealed. Viking Books.

    Google Scholar 

  • Maddison, A. (2010). World Population, GDP and Per Capita GDP, A.D.1—2003. www.ggdc.net/maddison

  • Martino, J. P. (2020). An introduction to technological forecasting. Routledge.

    Google Scholar 

  • McGovern, J., Tyagi, S., Stevens, M., & Mathew, S. (2003). Java Web services architecture (1st ed.). Elsevier.

    Google Scholar 

  • OECD. (2021). Investment (GFCF) (indicator). https://doi.org/10.1787/4537dc58-en

  • Plakunov, M. K., & Rayackas, R. P. (1984). Production functions in economic analysis. Vilnius.

    Google Scholar 

  • Scheruhn, H.-J., von Rosing, M., & Fallon, R. L. (2015). Information modeling and process modeling. In The complete business process handbook (Vol. 1). Elsevier—Morgan Kaufmann.

    Google Scholar 

  • Solow, M. (1957). Technical change and the aggregate production function. Review of Economics and Statistics, 39, 312–320.

    Article  Google Scholar 

  • Stoleru, L. (1975). Economic equilibrium and growth. North-Holland.

    Google Scholar 

  • Swan, M. (2015). Blockchain: Blue-print for a new economy. O’Reilly.

    Google Scholar 

  • West, M. (2011). Developing high quality data Models Morgan Kaufmann 2011. Web browsable version of the HQDM_FRAMEWORK data model.

    Google Scholar 

  • Yablonsky, A. I. (1986). Mathematical models in science research. Publishing House Mysl.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akaev, A., Rudskoy, A., Khusainov, B., Zeman, Z. (2022). Information Model for Calculating the Rate of Technical Progress. In: Rudskoi, A., Akaev, A., Devezas, T. (eds) Digital Transformation and the World Economy. Studies on Entrepreneurship, Structural Change and Industrial Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-89832-8_2

Download citation

Publish with us

Policies and ethics