Skip to main content

Ship Detection in SAR Images Based on an Improved Detector with Rotational Boxes

  • Conference paper
  • First Online:
Mobile Multimedia Communications (MobiMedia 2021)

Abstract

In the SAR ship data under complex backgrounds, especially in the coastal area, the horizontal bounding box detection algorithm makes a large number of coastal noise interference targets feature extraction and bounding box regression. In addition, the horizontal bounding box cannot well reflect the characteristics of large aspect ratio of ships. Therefore, this paper proposes an improved YOLOv3 detection algorithm based on the rotational bounding box, which increases the encoding method of the angle parameter, and generates the prediction bounding box at a fixed angle interval. Different angle intervals will have different effects. Focus loss function is used to solve the problem of positive and negative sample balance and difficult sample feature learning. The experimental results show that the average precision of the R-YOLOv3 algorithm based on the rotational bounding box on the SAR ship data set is 87.3%, which is a 13.5% gain compared with the classic YOLOv3, which reflects the high precision of the ship targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, L., Ouyang, W., Wang, X., et al.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2020)

    Article  Google Scholar 

  2. Su, H., Wei, S., Liu, S., et al.: HQ-ISNet: high-quality instance segmentation for remote sensing imagery. Remote Sens. 12(6), 989 (2020)

    Article  Google Scholar 

  3. Yadav, S., Biswas, M.: Threshold-based clustering of SAR image using gaussian kernel and mean-shift methods (2019)

    Google Scholar 

  4. Zhang, Q., Wu, Y., Zhao, W., et al.: Multiple-scale salient-region detection of SAR image based on gamma distribution and local intensity variation. IEEE Geosci. Remote Sens. Lett. 11(8), 1370–1374 (2014)

    Article  Google Scholar 

  5. Ressel, R., Lehner, S.: Texture-based sea ice classification on TerraSAR-X imagery. In: Proceedings of the 22 IAHR International Symposium on ICE 2014 (IAHR-ICE 2014) (2014)

    Google Scholar 

  6. Eltoft, T., Doulgeris, A., Anfinsen, S.N.: Model-based statistical analysis of PolSAR data. In: IEEE International Geoscience & Remote Sensing Symposium. IEEE (2009)

    Google Scholar 

  7. Robey, F.C., Fuhrmann, D.R., Kelly, E.J., et al.: A CFAR adaptive matched filter detector. IEEE Trans. Aerosp. Electron. Syst. 28(1), 208–216 (1992)

    Article  Google Scholar 

  8. Wu, Q., Li, Y., Lin, Y., et al.: Weighted sparse image classification based on low rank representation. Comput. Mater. Continua 56(1), 91–105 (2018)

    Google Scholar 

  9. Tu, Y., Lin, Y., Hou, C., et al.: Complex-valued networks for automatic modulation classification. IEEE Trans. Vehicular Technol. (99), 1 (2020)

    Google Scholar 

  10. Lin, Y., Tu, Y., Dou, Z.: An improved neural network pruning technology for automatic modulation classification in edge devices. IEEE Trans. Veh. Technol. 69(5), 5703–5706 (2020)

    Article  Google Scholar 

  11. Yu, J., Hu, A., Li, G., et al.: A robust RF fingerprinting approach using multi-sampling convolutional neural network. IEEE Internet Things J. (99), 1

    Google Scholar 

  12. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6) (2015)

    Google Scholar 

  13. Qinggang, W., Xueming, Z.: Remote sensing object detection via an improved YOLO network. Int. J. Performability Eng. 16(11), 1803 (2020)

    Article  Google Scholar 

  14. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. In: IEEE Conference on Computer Vision and Pattern Recognition, Utah: arXiv preprint: 1804. 0276 (2018)

    Google Scholar 

  15. Liu, W., Anguelov, D., Erhan, D., et al.: SSD: single shot multibox detector. In: European Conference on Computer Vision 6, 21–27 (2016)

    Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 99, 2999–3007 (2017)

    Google Scholar 

  17. Kang, M., Ji, K., Leng, X., et al.: Contextual region-based convolutional neural network with multilayer fusion for SAR Ship detection. Remote Sens. 9(8), 860 (2017)

    Article  Google Scholar 

  18. Li, J., Qu, C., Shao, J.: Ship detection in SAR images based on an improved faster R-CNN. Sar in Big Data Era: Models, Methods & Applications. IEEE (2017)

    Google Scholar 

  19. Kang, M., Leng, X., Lin, Z., et al.: A modified faster R-CNN based on CFAR algorithm for SAR ship detection. In: 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP). IEEE (2017)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision & Pattern Recognition. IEEE Computer Society (2016)

    Google Scholar 

  21. Lin, T.Y., Dollar, P., Girshick, R., et al.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society (2017)

    Google Scholar 

  22. Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. (99), 2999–3007 (2017)

    Google Scholar 

  23. Rampun, A., López-Linares, K., Morrow, P.J., et al. Breast pectoral muscle segmentation in mammograms using a modified holistically-nested edge detection network. Med. Image Anal. 57 (2019)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Research and Development Program of China under Grant 2018AAA0102702; the National Natural Science Foundation of China (62001137); the Natural Science Foundation of Heilongjiang Province (JJ2019LH2398); the Fundamental Research Funds for the Central Universities (3072020CFT0801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changbo Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, X., Hou, C., Xu, Y. (2021). Ship Detection in SAR Images Based on an Improved Detector with Rotational Boxes. In: Xiong, J., Wu, S., Peng, C., Tian, Y. (eds) Mobile Multimedia Communications. MobiMedia 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 394. Springer, Cham. https://doi.org/10.1007/978-3-030-89814-4_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89814-4_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89813-7

  • Online ISBN: 978-3-030-89814-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics