Skip to main content

Ground-Based Electromagnetic Levitation (EML) for the Measurement of Thermophysical Properties

  • Chapter
  • First Online:
Metallurgy in Space

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

This section gives a short description of ground-based electromagnetic levitation and its technical foundations. In addition, the various diagnostic means for the measurement of the following thermophysical properties of liquid metals and alloys will be described briefly: density, surface tension, self-diffusion coefficient, electrical conductivity, spectral normal emissivity, heat capacity and thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Iida, R.I.L. Guthrie, The Thermophysical Properties of Metallic Liquids, Vol 1: Fundamentals (Oxford University Press, Oxford, 2015)

    Book  Google Scholar 

  2. M. Holtzer, R. Danko, S. Zymankowska-Kumon, Metalurgija 51, 337 (2012)

    Google Scholar 

  3. J. Brillo, Thermophysical Properties of Multicomponent Liquid Alloys (de Gryuter, Berlin, 2016)

    Book  Google Scholar 

  4. D. Langstaff, M. Gunn, G.N. Greaves, A. Marsing, F. Kargl, Rev. Sci. Instrum. 84, 124901 (2013)

    Article  CAS  Google Scholar 

  5. P.C. Nordine, R.M. Atkins, Rev. Sci. Instrum. 53, 1456 (1982)

    Article  CAS  Google Scholar 

  6. S. Krishnan et al., High Temp. Sci. 31, 45 (1991)

    CAS  Google Scholar 

  7. P.F. Paradis, T. Ishikawa, G.-W. Lee, D. Holland-Moritz, J. Brillo, W.-K. Rhim, J.T. Okada, Mater. Sci. Eng. R 76, 1–53 (2014)

    Article  Google Scholar 

  8. J. Brillo, G. Lohöfer, F. Schmid-Hohagen, S. Schneider, I. Egry, Int. J. Mater. Prod. Technol. 26, 247–272 (2006)

    Article  CAS  Google Scholar 

  9. O. Muck, German Patent 422004, 30 Oct 1923

    Google Scholar 

  10. E.C. Okress, D.M. Wroughton, G. Comenetz, P.H. Brace, J.C.R. Kelly, J. Appl. Phys. 23, 549–552 (1952)

    Article  Google Scholar 

  11. S.-T. Rony, in Vacuum Metallurgy Conf. – Transactions, 7th Annual Vacuum Metallurgy Conference, Madison, 4–9 June 1964

    Google Scholar 

  12. E. Fromm, H. Jehn, Br. J. Appl. Phys. 16, 653–663 (1965)

    Article  Google Scholar 

  13. A.E. El-Mehairy, R.G. Ward, Trans. Met. Soc. AIME 227, 1226–1228 (1963)

    Google Scholar 

  14. S.Y. Shiriashi, R.G. Ward, Can. Met. Quat. 3, 117–122 (1964)

    Article  Google Scholar 

  15. S. Krishnan, G.P. Hansen, R.H. Hauge, J.L. Margrave, High Temp. Sci. 29, 17–52 (1990)

    CAS  Google Scholar 

  16. S. Krishnan, P.C. Nordine, J. Appl. Phys. 80, 1735–1742 (1996)

    Article  CAS  Google Scholar 

  17. S. Krishnan, Y. Yugawa, P.C. Nordine, Phys. Rev. B 55, 8201 (1997)

    Article  CAS  Google Scholar 

  18. S. Krishnan, C. Anderson, J.K. Weber, P. Nordine, W. Hofmeister, R. Bayuzick, Met. Mat. Trans. A24, 67–72 (1993)

    Article  Google Scholar 

  19. R.F. Brooks, B. Monaghan, A.J. Barnicoat, A. McCabe, K.C. Mills, P.N. Quested, Int. J. Thermophys. 17, 1151–1161 (1996)

    Article  CAS  Google Scholar 

  20. I. Egry, S. Sauerland, Mat. Sci. Eng. A 178, 73–76 (1994)

    Article  CAS  Google Scholar 

  21. I. Egry, G. Lohöfer, G. Jacobs, Phys. Rev. Lett. 75, 4043–4046 (1995)

    Article  CAS  Google Scholar 

  22. I. Egry, S. Sauerland, G. Jacobs, High Temp.-High Press. 26, 217–223 (1994)

    CAS  Google Scholar 

  23. R.A. Eichel, I. Egry, Z. Metallk. 90, 371–375 (1999)

    CAS  Google Scholar 

  24. D.L. Cummings, D.A. Blackburn, J. Fluid Mech. 224, 395 (1991)

    Article  Google Scholar 

  25. S. Sauerland, PhD thesis, RWTH-Aachen, Aachen, Germany, 1993

    Google Scholar 

  26. R.W. Hyers, G. Trapaga, B. Abedian, Metall. Trans. B 34, 29 (2003)

    Article  Google Scholar 

  27. A.D. Sneyd, H.K. Moffatt, J. Fluid Mech. 117, 45 (1982)

    Article  CAS  Google Scholar 

  28. R.W. Hyers, Meas. Sci. Technol. 16, 394 (2005)

    Article  CAS  Google Scholar 

  29. J. Priede, G. Gerbeth, IEEE Trans. Magn. 36, 349 (2000)

    Article  Google Scholar 

  30. J. Priede, G. Gerbeth, IEEE Trans. Magn. 36, 354 (2000)

    Article  Google Scholar 

  31. S. Schneider, PhD thesis, RWTH-Aachen, Aachen, Germany, 2002

    Google Scholar 

  32. Y. Luo, B. Damaschke, S. Schneider, G. Lohöfer, N. Abrosimov, M. Czupalla, K. Samwer, NPJ Microgravity 2, 1 (2016)

    Article  CAS  Google Scholar 

  33. J. Brillo, I. Egry, Int. J. Thermophys. 24, 1155 (2003)

    Article  CAS  Google Scholar 

  34. J. Brillo, T. Schumacher, K. Kajikawa, Met. Mat. Trans. A 50, 924–935 (2019)

    Article  CAS  Google Scholar 

  35. J. Brillo, I. Egry, I. Ho, Int. J. Thermophys. 27, 494 (2006)

    Article  CAS  Google Scholar 

  36. S. Amore, S. Delsante, H. Kobatake, J. Brillo, J. Chem. Phys. 139, 064504–064501 (2013)

    Article  CAS  Google Scholar 

  37. K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Woodhead Publishing Ltd, Cambridge, 2002)

    Book  Google Scholar 

  38. M. Adachi, T. Aoyagi, A. Mizuno, M. Watanabe, H. Kobatake, H. Fukuyama, Int. J. Thermophys. 29, 2006–2014 (2008)

    Article  CAS  Google Scholar 

  39. P.F. Zhou, H.P. Wang, S.J. Wang, L. Hu, B. Wei, Metall. Mater. Trans. A 49A, 5488–5496 (2018)

    Article  Google Scholar 

  40. G. Lohöfer, Int. J. Thermophys. 41, 29–42 (2020)

    Article  Google Scholar 

  41. J. Brillo, G. Lauletta, L. Vaianella, E. Arato, D. Giuranno, R. Novakovic, E. Ricci, ISIJ Int. 54, 2115–2119 (2014)

    Article  CAS  Google Scholar 

  42. J. Brillo, J.J. Wessing, H. Kobatake, H. Fukuyama, High Temp.-High Press. 49, 89–105 (2020)

    Article  Google Scholar 

  43. A. Meyer, Phys. Rev. B 66, 134205-1–134205-9 (2002)

    Google Scholar 

  44. A. Meyer, S. Stüber, D. Holland-Moritz, O. Heinen, T. Unruh, Phys. Rev. B 77, 092201 (2008)

    Article  Google Scholar 

  45. A.I. Pommrich, A. Meyer, D. Holland-Moritz, T. Unruh, Appl. Phys. Lett. 92, 241922 (2008)

    Article  Google Scholar 

  46. J. Horbach, R. Rozas, T. Unruh, A. Meyer, Phys. Rev. B 80, 212203 (2009)

    Article  Google Scholar 

  47. S. Stüber, D. Holland-Moritz, T. Unruh, A. Meyer, Phys. Rev. B 81, 024204 (2010)

    Article  Google Scholar 

  48. J.P. Boon, S. Yip, Molecular Hydrodynamics (McGraw-Hill, New York, 1980)

    Google Scholar 

  49. T. Richardsen, Ein induktives Messverfahren zur Bestimmung der elektrischen Leitfähigkeit an unterkühlten Metallschmelzen (Shaker, Aachen, 2001)

    Google Scholar 

  50. T. Richardsen, G. Lohöfer, Int. J. Thermophys. 20, 1029 (1999)

    Article  CAS  Google Scholar 

  51. G. Lohöfer, J. Brillo, I. Egry, Int. J. Thermophys. 25, 1535–1550 (2004)

    Article  Google Scholar 

  52. G. Lohöfer, Int. J. Eng. Sci. 32, 107–117 (1994)

    Article  Google Scholar 

  53. G. Lohöfer, Rev. Sci. Instrum. 89, 124709 (2018)

    Article  Google Scholar 

  54. R. Kurosawa, T. Inuo, Y. Baba, K. Sugioka, M. Kubo, T. Tsukada, H. Fukuyama, Meas. Sci. Technol. 24, 015603-1–015603-7 (2013)

    Article  Google Scholar 

  55. H. Kobatake, H. Khosroabadi, H. Fukuyama, Meas. Sci. Technol. 22, 015102-1–015102-7 (2011)

    Article  Google Scholar 

  56. J. Brillo, J.J. Wessing, H. Kobatake, H. Fukuyama, High Temp.-High Press. 48, 423–438 (2019)

    Article  Google Scholar 

  57. H.-J. Fecht, W.L. Johnson, Rev. Sci. Instrum. 62, 1299–1303 (1991)

    Article  CAS  Google Scholar 

  58. R.K. Wunderlich, H.-J. Fecht, Meas. Sci. Technol. 16, 402–416 (2005)

    Article  CAS  Google Scholar 

  59. B. Guo, G. Teodorescu, R.A. Overfelt, P.D. Jones, Int. J. Thermophys. 29, 1997–2005 (2008)

    Article  CAS  Google Scholar 

  60. H. Fukuyama, H. Kobatake, K. Takahashi, I. Minato, T. Tsukada, S. Awai, Meas. Sci. Technol. 18, 2059 (2007)

    Article  CAS  Google Scholar 

  61. J.J. Wessing, PhD thesis, RWTH-Aachen, Aachen, 2018

    Google Scholar 

  62. H. Fukuyama, Y. Waseda (eds.), High-Temperature Measurements of Materials (Springer, Berlin/Heidelberg, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Brillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brillo, J. (2022). Ground-Based Electromagnetic Levitation (EML) for the Measurement of Thermophysical Properties. In: Fecht, HJ., Mohr, M. (eds) Metallurgy in Space . The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-89784-0_8

Download citation

Publish with us

Policies and ethics