Skip to main content

Thermophysical Properties of Semiconductors

  • Chapter
  • First Online:
Metallurgy in Space

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 937 Accesses

Abstract

The thermophysical properties of melts of samples from the Si-Ge system were measured in the Electromagnetic Levitator on board of the International Space Station (ISS-EML). The containerless measurements of the density, thermal expansion, surface tension, viscosity, and electrical resistivity were performed with highly doped samples in the stable melt as well as in the undercooled state.

The volume and the electrical resistivity show a nonlinear temperature dependence. This behavior can be interpreted in terms of a structural change (phase transition) in the melt. With decreasing temperature, covalent, tetrahedral structure elements (small range order) begin to form, and therefore, the specific volume deviates from that of a simple liquid, which is characterized by a simple two-body interatomic potential with linear thermal expansion, leading to the observed nonlinear temperature dependence.

The surface tension was investigated with the oscillating drop technique. The data are comparable to previous measurements and are only slightly temperature dependent. The surface oscillations are exponentially damped. The damping is dominated by turbulent flow in the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 25th DLR Parabolic flight campaign, 20th–31st October 2014, Practical and Technical Information, DI-2014-ed1-en, Novespace, Bordeaux-Mérignac, Mars 2014. See also: www.novespace.com

  2. Y. Luo, B. Damaschke, G. Lohöfer, K. Samwer, Thermophysical properties of a Si50Ge50 melt measured on board the International Space Station. npj Microgravity 6, 10 (2020) http://creativecommons.org/licenses/by/4.0/

    Article  CAS  Google Scholar 

  3. N.V. Abrosimov, S.N. Rossolenko, W. Thieme, A. Gerhardt, W. Schröder, Czochralski growth of Si- and Ge-rich SiGe single crystals. J. Cryst. Growth 174, 182–186 (1997)

    Article  CAS  Google Scholar 

  4. Y. Luo et al., Contactless processing of SiGe-melts in EML under reduced gravity. npj Microgravity 2, 1–9 (2016)

    Article  CAS  Google Scholar 

  5. C.A. Angell, S.S. Borick, Comment on ‘Structure of supercooled liquid silicon’. J. Phys. Condens. Matter 11, 8163–8166 (1999)

    Article  CAS  Google Scholar 

  6. D. Keren, C. Gotsman, Fitting curves and surfaces with constrained implicit polynomials. IEEE Trans. Pattern Anal. Mach. Intell. 21(1), 31–41 (1999)

    Article  Google Scholar 

  7. W. M. Haynes (ed.), CRC Handbook of Chemistry and Physics, 92nd edn. (CRC Press, Boca Raton, 2011) ISBN 1439855110

    Google Scholar 

  8. E. Wiberg, N. Wiberg, A.F. Holleman, Inorganic Chemistry (Academic/De Gruyter, San Diego/New York/Berlin, 2001) ISBN 0-12-352651-5

    Google Scholar 

  9. I. Egry, G. Lohöfer, I. Seyhan, S. Schneider, B. Feuerbacher, Viscosity of eutectic Pd78Cu6Si16 measured by the oscillating drop technique in microgravity. Appl. Phys. Lett. 73, 462–463 (1998)

    Article  CAS  Google Scholar 

  10. T. Iwashita, D.M. Nicholson, T. Egami, Elementary excitations and crossover phenomenon in liquids. Phys. Rev. Lett. 110, 205504 (2013)

    Article  CAS  Google Scholar 

  11. R.W. Hyers, Fluid flow effects in levitated droplets. Meas. Sci. Technol. 16, 394–401 (2005)

    Article  CAS  Google Scholar 

  12. O. Reynolds, An experimental Investigation of the circumstances, which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. Lond. 174, 935–982 (1883)

    Google Scholar 

  13. Z. Zhou, S. Mukherjee, W.K. Rhim, Measurement of thermophysical properties of molten silicon using an upgraded electrostatic levitator. J. Cryst. Growth 257, 350–358 (2003)

    Article  CAS  Google Scholar 

  14. J.J.Z. Li, W.K. Rhim, C.P. Kim, K. Samwer, W.L. Johnson, Evidence for a liquid–liquid phase transition in metallic fluids observed by electrostatic levitation. Acta Mater. 59, 2166–2171 (2011)

    Article  CAS  Google Scholar 

  15. G. Bracker et al., Reported on the 12th International Workshop on Subsecond Thermophysics (IWSSTP 2019), hold June 3–6, 2019, Cologne, Germany

    Google Scholar 

  16. I. Egry, On the relation between surface tension and viscosity for liquid metals. Scripta Met. Mat. 26, 1349 (1992)

    Article  CAS  Google Scholar 

  17. J. Brillo, Thermophysical Properties of Multicomponent Liquid Alloys, De Gruyter Oldenbourg (Walter de Gruyter GmbH, Berlin/Boston, 2016)

    Book  Google Scholar 

  18. X. Xiao, R.W. Hyers, R.K. Wunderlich, H.J. Fecht, D.M. Matson, Deformation induced frequency shifts of oscillating droplets during molten metal surface tension measurement. Appl. Phys. Lett. 113, 011903 (2018)

    Article  Google Scholar 

  19. S.M. Chathoth, B. Damaschke, K. Samwer, S. Schneider, Thermophysical properties of Si, Ge, and Si–Ge alloy melts measured under microgravity. Appl. Phys. Lett. 93(1–3), 071902 (2008)

    Article  Google Scholar 

  20. E. Ricci et al., Surface tension and density of Si-Ge melts. J. Chem. Phys. 140, 214704 (2014)

    Article  Google Scholar 

  21. D.S. Sanditor, A criterion for the glass-liquid transition. J. Non-Cryst. Solids 385(148) (2014)

    Google Scholar 

  22. V.A. Drebushchak, A.I. Turkin, Relationship between heat capacity and thermal expansion derived from the Lennard–Jones potential. J. Therm. Anal. Calorim. 65, 745–753 (2001)

    Article  CAS  Google Scholar 

  23. O.V. Glazov, M.D. Shchelikov, Volume changes during melting and heating of silicon and germanium melts. High Temp. 38, 405–412 (2000)

    Article  CAS  Google Scholar 

  24. R.V. Kulkarni, W.G. Aulbur, D. Stroud, Ab initio molecular-dynamics study of the structural and transport properties of liquid germanium. Phys. Rev. B 55, 6896 (1997)

    Article  CAS  Google Scholar 

  25. S.M. Chathoth, B. Damaschke, T. Unruh, K. Samwer, Influence of structural changes on diffusion in liquid germanium. Appl. Phys. Lett. 94, 221906 (2009)

    Article  Google Scholar 

  26. G. Lohöfer, Magnetization and impedance of an inductively coupled metal sphere. Int. J. Eng. Sci. 32, 107–117 (1994)

    Article  Google Scholar 

  27. G. Lohöfer, High-resolution inductive measurement of electrical resistivity and density of electromagnetically levitated liquid metal droplets. Rev. Sci. Instrum. 89, 124709 (2018)

    Article  Google Scholar 

  28. S. Takeuchi, H. Endo, The electrical resistivity of the metals in the molten state. Trans. JIM 3, 30–35 (1962)

    Article  CAS  Google Scholar 

  29. S. Takeuchi, H. Endo, Theoretical and experimental studies on the resistivity of molten alloys. Trans. JIM 3, 35–41 (1962)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the access to the ISS-EML, which is a joint undertaking of the European Space Agency (ESA) and the DLR Space Administration. The reported work was conducted in the framework of the ESA research project SEMITHERM (AO-2000-068). The authors acknowledge also the colleagues from DLR/MUSC in Cologne for the help with the realization of the experiments and N. Abrosimov et al. in Leibniz Institute for Crystal Growth in Berlin for sample material preparations. The work is financially supported by DLR Bonn via project 50WM1750.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Damaschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, Y., Damaschke, B., Lohöfer, G., Samwer, K. (2022). Thermophysical Properties of Semiconductors. In: Fecht, HJ., Mohr, M. (eds) Metallurgy in Space . The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-89784-0_18

Download citation

Publish with us

Policies and ethics