Skip to main content

Polymer Composites with Molecular Fillers: Microscopic Views into Supramolecular Reinforcement

  • Chapter
  • First Online:
Dynamics of Composite Materials

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

This chapter provides an overview of the insights that dielectric spectroscopy can provide into mechanisms of supramolecular reinforcement of polymer chains equipped with associating polar “sticky” groups. This situation features analogies to the pinning of polymer chains to attractive nanoparticles, but the dielectric response of the polar groups provides direct access to the dynamics of the sticky sites. This is of potential use in elucidating the molecular origin of the viscoelastic properties of such materials. Analogies and differences between systems composed of defined binary associates versus large aggregates are discussed, and ambiguities as well as open challenges in interpreting the experimental results are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BIIR:

Brominated isobutylene isoprene rubber (also: butyl rubber)

BLrN:

Bond lifetime renormalization

\(\Delta H_\mathrm {st}\) :

Reaction enthalpy for sticky bond formation

\(c_x\) :

Number/mole concentration of species x

\(\Delta \varepsilon \) :

Dielectric strength of a relaxtion

BDS:

Broadband dielectric spectroscopy

DP:

Degree of polymerization

DSC:

Differential scanning calorimetry

\(\varepsilon ^\prime \), \(\varepsilon ^{\prime \prime }\):

Real and imaginary part of the complex dielectric function

\(\epsilon _\mathrm {b}\) :

Microscopic energy barrier for sticker association/dissociation

\(E_\mathrm {a}^\mathrm {st}\) :

Activation energy for sticker dissociation

HN:

Havriliak-Negami (fitting function)

ILM:

Interfacial layer model

IR:

Infrared (spectroscopy)

\(J(\tau _\mathrm {open})\) :

Number of returns of a free sticker

\(K_\mathrm {a/d}\) :

Association/dissociation equilibrium constant

\(k_+\) :

Association rate

\(k_-\) :

Dissociation rate

\(\mu \) :

Electric dipole moment, mostly in Debye (1 D = 3.336\(\times \)10\(^{-30}\) C\(\cdot \)m)

MWS:

Maxwell-Wagner-Sillars (interfacial polarization process)

\(\bar{n}\) :

(mole) number density

\(\tau _\alpha ^*\) or \(\tau _{\alpha _2}\):

Dielectric relaxation time associated with sticky groups

\(\tau _\mathrm {d}^*\) :

Timescale for sticker dissociation (\(=1/k_-\))

\(\tau _\mathrm {CR}\) :

Dielectric relaxtion time related to sticker clusters; unknown origin

\(\tau _\mathrm {open}\) :

Timescale of free-sticker diffusion

\(\tau _\mathrm {rot}\) and \(\tau _\mathrm {rot}^\prime \):

Rotational correlation time of a free sticker and a sticker pair, resp.

\(\tau _\mathrm {st}^*\) :

Rheologically relevant relaxation time of a sticky chain segment

\(T_\mathrm {g}\) :

Glass transition temperature

PB:

Polybutadiene

PDMS:

Polydimethylsiloxane

PI:

Polyisoprene

PIB:

Polyisobutylene

\(\omega \) :

Angular frequency in rad/s

SAXS:

Small-angle X-ray scattering

References

  1. Leibler L, Rubinstein M, Colby R (1991) Dynamics of reversible networks. Macromolecules 24:4701–4707

    Article  CAS  Google Scholar 

  2. de Lucca Freitas L, Auschra C, Abetz V, Stadler R (1991) Hydrogen bonds in unpolar matrix—Comparison of complexation in polymeric and low molecular-weight systems. Colloid Polym Sci 269:566–575

    Google Scholar 

  3. Seiffert S (ed) (2015) Supramolecular polymer networks and gels. Springer, Cham

    Google Scholar 

  4. Hager MD, Zwaag SVD, Schubert US (eds) (2016) Self-healing materials. Springer, Cham

    Google Scholar 

  5. Campanella A, Döhler D, Binder WH (2018) Self-Healing in Supramolecular Polymers. Macromol Rapid Commun 39:1700739

    Article  Google Scholar 

  6. Rupp H, Döhler D, Hilgeroth P, Mahmood N, Beiner M, Binder WH (2019) 3D Printing of Supramolecular polymers: impact of nanoparticles and phase separation on printability. Macromol Rapid Commun 40:1900467

    Article  CAS  Google Scholar 

  7. Eisenberg A, Kim J-S (1998) Introduction to Ionomers. Wiley, New York

    Google Scholar 

  8. Eisenberg A, Hird B, Moore RB (1990) A new multiplet-cluster model for the morphology of random Ionomers. Macromolecules 23:4098–4107

    Article  CAS  Google Scholar 

  9. Macknight WJ, Lundberg RD (1984) Elastomeric Ionomers. Rubber Chem Technol 57:652–663

    Article  CAS  Google Scholar 

  10. Malmierca MA, González-Jiménez A, Mora-Barrantes I, Posadas P, Rodríguez A, Ibarra L, Nogales A, Saalwächter K, Valentín JL (2014) Characterization of network structure and chain dynamics of elastomeric Ionomers by means of \(^1\)H low-field NMR. Macromolecules 47:5655–5667

    Article  CAS  Google Scholar 

  11. Castagna AM, Wang W, Winey KI, Runt J (2011) Structure and dynamics of Zinc-neutralized Sulfonated Polystyrene Ionomers. Macromolecules 44:2791–2798

    Article  CAS  Google Scholar 

  12. Castagna AM, Wang W, Winey KI, Runt J (2011) Influence of Cation Type on structure and dynamics in Sulfonated Polystyrene Ionomers. Macromolecules 44:5420–5426

    Article  CAS  Google Scholar 

  13. Wübbenhorst M, van Turnhout J (2002) Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling. J Noncryst Solids 305:40–49

    Google Scholar 

  14. Chen Q, Tudryn GJ, Colby RH (2013) Ionomer dynamics and the sticky Rouse model. J Rheol 57:1441–1461

    Article  CAS  Google Scholar 

  15. Gainaru C, Stacy EW, Bocharova V, Gobet M, Holt AP, Saito T, Greenbaum S, Sokolov AP (2016) Mechanism of conductivity relaxation in liquid and polymeric electrolytes: direct link between conductivity and diffusivity. J Phys Chem B 120:11074–11083

    Article  CAS  Google Scholar 

  16. Rubinstein M, Semenov N (1998) Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics. Macromolecules 31:1386–1397

    Google Scholar 

  17. Müller M, Kremer F, Stadler R, Fischer EW, Seidel U (1995) The molecular dynamics of thermoreversible networks as studied by broadband dielectric spectroscopy. Colloid Polym Sci 273:38–46

    Article  Google Scholar 

  18. Müller M, Stadler R, Kremer F, Williams G (1995) On the motional coupling between chain and junction dynamics in Thermoreversible networks. Macromolecules 28:6942–6949

    Article  Google Scholar 

  19. Williams G (1972) The use of the dipole correlation function in dielectric relaxation. Chem Rev 72:55–69

    Article  CAS  Google Scholar 

  20. Stukalin EB, Cai L-H, Kumar NA, Leibler L, Rubinstein M (2013) Self-healing of Unentangled polymer networks with reversible bonds. Macromolecules 46:7525–7541

    Article  CAS  Google Scholar 

  21. Gold BJ, Hövelmann CH, Lühmann N, Székely NK, Pyckhout-Hintzen W, Wischnewski A, Richter D (2017) Importance of compact random walks for the rheology of transient networks. ACS Macro Lett 6:73–77

    Article  CAS  Google Scholar 

  22. Gold BJ, Hövelmann CH, Lühmann N, Pyckhout-Hintzen W, Wischnewski A, Richter D (2017) The microscopic origin of the rheology in supramolecular entangled polymer networks. J Rheol 61:1211–1226

    Article  CAS  Google Scholar 

  23. Ghosh A, Schweizer KS (2021) Physical bond breaking in associating copolymer liquids. ACS Macro Lett 10:122–128

    Article  CAS  Google Scholar 

  24. Hoy RS, Fredrickson GH (2009) Thermoreversible associating polymer networks. I. Interplay of thermodynamics, chemical kinetics, and polymer physics. J Chem Phys 131:224902

    Google Scholar 

  25. Tress M, Xing K, Ge S, Cao P, Saito T, Sokolov AP (2019) What dielectric spectroscopy can tell us about supramolecular networks. Eur Phys J E 42:133

    Article  CAS  Google Scholar 

  26. Ge S, Tress M, Xing K, Cao P, Saito T, Sokolov AP (2020) Viscoelasticity in associating oligomers and polymers: experimental test of the bond lifetime renormalization model. Soft Matter 16:390–401

    Article  CAS  Google Scholar 

  27. Amin D, Likhtman AE, Wang Z (2016) Dynamics in Supramolecular polymer networks formed by associating Telechelic chains. Macromolecules 49:7510–7524

    Article  CAS  Google Scholar 

  28. Müller M, Dardin A, Seidel U, Balsamo V, Iván L, Spiess HW, Stadler R (1996) Junction dynamics in Telechelic hydrogen bonded Polyisobutylene Networksn Macromolecules 29:2577–2583

    Google Scholar 

  29. Goldansaz H, Fustin C-A, Wübbenhorst M, van Ruymbeke E (2015) How Supramolecular Asssemblies control dynamics of associative polymers: toward a general picture. Macromolecules 49:1890–1902

    Article  Google Scholar 

  30. Xing K, Tress M, Cao P-F, Fan F, Cheng S, Saito T, Sokolov AP (2018) The role of chain-end association lifetime in segmental and chain dynamics of telechelic polymers. Macromolecules 51:8561–8573

    Article  CAS  Google Scholar 

  31. Xing K, Tress M, Cao P-F, Cheng S, Saito T, Novikov VN, Sokolov AP (2018) Hydrogen-bond strength changes network dynamics in associating telechelic PDMS. Soft Matter 14:1235–1246

    Article  CAS  Google Scholar 

  32. Halperin A, Alexander S (1989) Polymeric micelles: their relaxation kinetics. Macromolecules 22:2403–2412

    Article  CAS  Google Scholar 

  33. Semenov AN, Joanny J-F, Khokhlov AR (1995) Associating polymers: equilibrium and linear viscoelasticity. Macromolecules 28:1066–1075

    Article  CAS  Google Scholar 

  34. Rubinstein M, Panyukov S (2002) Elasticity of polymer networks. Macromolecules 35:6670–6686

    Article  CAS  Google Scholar 

  35. Mordvinkin A, Suckow M, Böhme F, Colby RH, Creton C, Saalwächter K (2019) Hierarchical sticker and sticky chain dynamics in self-healing butyl rubber ionomers. Macromolecules 52:4169–4184

    Article  CAS  Google Scholar 

  36. Mordvinkin A, Döhler D, Binder WH, Colby RH, Saalwächter K (2020) Terminal flow of cluster-forming supramolecular polymer networks: single-chain relaxation or micelle reorganization? Phys Rev Lett 125:127801

    Google Scholar 

  37. Mordvinkin A, Döhler D, Binder WH, Colby RH, Saalwächter K (2021) Rheology, sticky chain and sticker dynamics of supramolecular elastomers based upon cluster-forming telechelic linear and star polymers. Macromolecules 54:5065–5076. https://doi.org/10.1021/acs.macromol.1c00655

  38. Das A, Sallat A, Böhme F, Suckow M, Basu D, Wießner S, Stöckelhuber KW, Voit B, Heinrich G (2015) Ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater Interfaces 7:20623–20630

    Article  CAS  Google Scholar 

  39. Richter D, Arbe A, Colmenero J, Monkenbusch M, Farago B, Faust R (1998) Molecular motions in Polyisobutylene: a neutron spin echo and dielectric investigation. Macromolecules 31:1133–1143

    Article  CAS  Google Scholar 

  40. Kremer F, Schönhals A (eds) (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  41. Hall LM, Seitz ME, Winey KI, Opper KL, Wagener KB, Stevens MJ, Frischknecht AL (2012) Ionic aggregate structure in Ionomer melts: effect of molecular architecture on aggregates and the Ionomer peak. J Am Chem Soc 134:574–587

    Article  CAS  Google Scholar 

  42. Yan T, Schröter K, Herbst F, Binder WH, Thurn-Albrecht T (2014) Nanostructure and rheology of hydrogen-bonding Telechelic polymers in the melt: from Micellar liquids and solids to Supramolecular gels. Macromolecules 47:2122–2130

    Article  CAS  Google Scholar 

  43. Pulst M, Balko J, Golitsyn Y, Reichert D, Busse K, Kressler J (2016) Proton conductivity and phase transitions in 1,2,3-triazole. Phys Chem Chem Phys 18:6153–6163

    Article  CAS  Google Scholar 

  44. Tress M, Ge S, Xing K, Cao P-F, Saito T, Genix A-C, Sokolov AP (2021) Turning rubber into a glass: mechanical reinforcement by Microphase separation. ACS Macro Lett 10:197–202

    Article  CAS  Google Scholar 

  45. Ge S, Samanta S, Tress M, Li B, Xing K, Dieudonné-George P, Genix AC, Cao P-F, Dadmun M, Sokolov AP (2021) Critical role of the interfacial layer in associating polymers with Microphase separation. Macromolecules 54:4246–4256

    Article  CAS  Google Scholar 

  46. Maurer FHJ (1990) An interlayer model to describe the physical properties of particulate composites. In: Ishida H (ed) Controlled interphases in composite materials, pp. 491–504, Cleveland. Springer, Dordrecht

    Google Scholar 

Download references

Acknowledgements

I am indebted to all members of the groups of Ralph Colby and Jim Runt for their hospitality during my sabbatical at Penn State University in spring 2018, teaching an old NMR dog new dielectric tricks. I particularly thank Ciprian Iacob for guiding my first steps into hands-on dielectric spectroscopy, as well as Aijie Han and Josh Bostwick for sustained support. Ralph’s critical views on ambiguous data and numerous discussions are highly appreciated. I also thank Thomas Thurn-Albrecht and Klaus Schröter for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Saalwächter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saalwächter, K. (2022). Polymer Composites with Molecular Fillers: Microscopic Views into Supramolecular Reinforcement. In: Schönhals, A., Szymoniak, P. (eds) Dynamics of Composite Materials. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-030-89723-9_6

Download citation

Publish with us

Policies and ethics