Skip to main content

The Simplest Minimal Free Resolutions in \({\mathbb {P}^1 \times \mathbb {P}^1}\)

  • Chapter
  • First Online:
Commutative Algebra

Abstract

We study the minimal bigraded free resolution of an ideal with three generators of the same bidegree, contained in the bihomogeneous maximal ideal 〈s, t〉∩〈u, v〉 of the bigraded ring \(\mathbb {K}[s,t;u,v]\). Our analysis involves tools from algebraic geometry (Segre-Veronese varieties), classical commutative algebra (Buchsbaum-Eisenbud criteria for exactness, Hilbert-Burch theorem), and homological algebra (Koszul homology, spectral sequences). We treat in detail the case in which the bidegree is (1, n). We connect our work to a conjecture of Fröberg–Lundqvist on bigraded Hilbert functions, and close with a number of open problems.

Dickenstein is supported by ANPCyT PICT 2016-0398, UBACYT 20020170100048BA, and CONICET PIP 11220150100473, Argentina.

Schenck is supported by NSF 1818646, Fulbright FSP 5704.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Aramova, K. Crona, and E. De Negri, Bigeneric initial ideals, diagonal subalgebras and bigraded Hilbert functions, J. Pure Appl. Algebra 150 (2000), 215–235.

    Article  MathSciNet  Google Scholar 

  2. C. Berkesch, D. Erman, G.G. Smith, Virtual resolutions for a product of projective spaces, Algebraic Geometry, 7 (2020), 460–481.

    MathSciNet  MATH  Google Scholar 

  3. N. Botbol, A. Dickenstein, M. Dohm, Matrix representations for toric parametrizations, Comput. Aided Geom. D. 26 (2009), 757–771.

    Article  MathSciNet  Google Scholar 

  4. D. Buchsbaum, D. Eisenbud, What makes a complex exact? J. Algebra 25 (1973), 259–268.

    Article  MathSciNet  Google Scholar 

  5. W. Burau, J. Zeuge, Über den Zusammenhang zwischen den Partitionen einer natürlichen Zahl und den linearen Schnitten der einfachsten Segremannigfaltigkeiten. J. Reine Angew. Math 274-75 (1975), 104–111.

    Google Scholar 

  6. L. Busé, M. Chardin, Implicitizing rational hypersurfaces using approximation complexes, J. Symb. Comput. 40 (2005), 1150–1168.

    Article  MathSciNet  Google Scholar 

  7. D. Cox, Curves, surfaces and syzygies, in “Topics in algebraic geometry and geometric modeling”, Contemp. Math. 334 (2003) 131–150.

    Article  Google Scholar 

  8. D. Cox, A. Dickenstein, H. Schenck, A case study in bigraded commutative algebra, in “Syzygies and Hilbert Functions”, edited by Irena Peeva, Lecture notes in Pure and Applied Mathematics 254, (2007), 67–112.

    Article  Google Scholar 

  9. D. Cox, R. Goldman, M. Zhang, On the validity of implicitization by moving quadrics for rational surfaces with no basepoints, J. Symb. Comput. 29 (2000), 419–440.

    Article  Google Scholar 

  10. W.L.F. Degen, The types of rational (2,  1)-Bézier surfaces. Comput. Aided Geom. D. 16 (1999), 639–648.

    Article  Google Scholar 

  11. E. Duarte, H. Schenck, Tensor product surfaces and linear syzygies, P. Am. Math. Soc., 144 (2016), 65–72.

    Article  MathSciNet  Google Scholar 

  12. D. Eisenbud, Commutative Algebra with a view towards Algebraic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1995.

    MATH  Google Scholar 

  13. D. Eisenbud, Geometry of Syzygies, Springer-Verlag, Berlin-Heidelberg-New York, 2005.

    MATH  Google Scholar 

  14. M. Elkadi, A. Galligo and T. H. Lê, Parametrized surfaces in \({\mathbb {P}}^3\) of bidegree (1,  2), Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2004, 141–148.

    Google Scholar 

  15. R. Fröberg, S. Lundqvist, Questions and conjectures on extremal Hilbert series. Rev. Union Mat. Argent. 59 (2018), 415–429.

    Article  MathSciNet  Google Scholar 

  16. A. Galligo, T. H. Lê, General classification of (1,  2) parametric surfaces in \({\mathbb P}^3\), in “Geometric modeling and algebraic geometry”, Springer, Berlin, (2008) 93–113.

    Google Scholar 

  17. D. Grayson, M. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.

  18. J. Harris, Algebraic Geometry, A First Course, Springer-Verlag, Berlin-Heidelberg-New York, 1992.

    Book  Google Scholar 

  19. R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1977.

    Book  Google Scholar 

  20. J. Herzog, A. Simis, W. Vasconcelos Approximation complexes of blowing-up rings, J. Algebra 74 (1982), 466–493.

    Article  MathSciNet  Google Scholar 

  21. J. Herzog, A. Simis, W. Vasconcelos Approximation complexes of blowing-up rings II, J. Algebra 82 (1983), 53–83.

    Article  MathSciNet  Google Scholar 

  22. J. W. Hoffman and H. H. Wang, Castelnuovo–Mumford regularity in biprojective spaces, Adv. Geom. 4 (2004), 513–536.

    Article  MathSciNet  Google Scholar 

  23. D. Maclagan, G.G. Smith, Multigraded Castelnuovo–Mumford regularity, J. Reine Angew. Math., 57 (2004), 179–212.

    MathSciNet  MATH  Google Scholar 

  24. T. Römer, Homological properties of bigraded algebras, Illinois J. Math., 45 (2001), 1361–1376.

    Article  MathSciNet  Google Scholar 

  25. H. Schenck, A. Seceleanu, J. Validashti, Syzygies and singularities of tensor product surfaces of bidegree (2,  1), Math. Comp. 83 (2014), 1337–1372.

    Article  MathSciNet  Google Scholar 

  26. T. W. Sederberg, F. Chen, Implicitization using moving curves and surfaces, in Proceedings of SIGGRAPH, 1995, 301–308.

    Google Scholar 

  27. B. Sturmfels, The Hurwitz form of a projective variety, J. Symb. Comput., 79 (2017), 186–196.

    Article  MathSciNet  Google Scholar 

  28. S. Zube, Correspondence and (2,  1)-Bézier surfaces, Lith. Math. J. 43 (2003), 83–102.

    Article  MathSciNet  Google Scholar 

  29. S. Zube, Bidegree (2,  1) parametrizable surfaces in \({\mathbb P}^3\), Lith. Math. J. 38 (1998), 291–308.

    Google Scholar 

Download references

Acknowledgements

Most of this paper was written while the third author was visiting Universidad de Buenos Aires on a Fulbright grant, and he thanks the Fulbright foundation for support and his hosts for providing a wonderful visit. All computations were done using Macaulay2 [17].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal Schenck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Botbol, N., Dickenstein, A., Schenck, H. (2021). The Simplest Minimal Free Resolutions in \({\mathbb {P}^1 \times \mathbb {P}^1}\) . In: Peeva, I. (eds) Commutative Algebra. Springer, Cham. https://doi.org/10.1007/978-3-030-89694-2_3

Download citation

Publish with us

Policies and ethics