Skip to main content

Synthesis and Applications of Organic Framework-Based Cellulosic Nanocomposites

  • Reference work entry
  • First Online:
Handbook of Nanocelluloses

Abstract

Generally, organic frameworks are an emerging class of crystalline frameworks with regular porosity and a complex molecular structure with active functional groups. Covalent organic frameworks and metal-organic frameworks are the most popular in framework material chemistry. Due to their fascinating physical and chemical properties, they have been used in a wide range of applications including adsorption, separation, catalysis, membranes, energy storage devices, and pharmaceuticals. The foregoing makes developing nanocomposites based on these organic frameworks with diverse supporting elements such as nanoparticles, graphene, carbon nanotubes, cellulose, and other components more appealing. Among them, cellulose-based nanocarrier materials are more interesting, due to their cost-effectiveness and abundant availability. Therefore, in this chapter, we focus on composites which were made by the combinations of organic frameworks with cellulosic materials. The reasons for developing these kinds of composites are to improve the stability of organic frameworks and reduce cost for wide range of industrial applications. Since, COFs and MOFs are relatively less stable, their crystallinity and molecular structures would be readily lost in harsh conditions as well as expensive. Therefore, the stable supporting materials are required to enhance their stability for a long time to sustain in harsh circumstance while doing different applications. Particularly, in this chapter, we are going to discuss much more about the synthesis of various COF-/MOF-based cellulosic composites and their wide range of applications. Compared with COFs, MOF-based cellulosic composites have been reported more in recent years. Generally, MOFs have effective interactions with cellulose molecules due to their metal coordination and, also, they have shown excellent performance in their applications. Particularly, these classes of composites were used as a membrane for nanofiltration, adsorbent in wastewater treatment, extraction and removal of toxic ions, biomedical and metal applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park, S.Y., Ryu, S.Y., Kwak, S.Y.: Antibacterial metal-fiber hybrid with covalent assembly of silver and palladium nanoparticles on cellulose fibers. In 2010 International conference on biology, environmental and chemistry, IPCBEE. IACSIT Press Singapore. 1, 183–186 (2011)

    Google Scholar 

  2. Isogai, A., Hänninen, T., Fujisawa, S., Saito, T.: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog. Polym. Sci. 86, 122–148 (2018)

    Article  CAS  Google Scholar 

  3. Ramli, R., Khan, M.M.R., Yunus, R.M., Ong, H.R., Halim, R.M., Aziz, A.A., Ibrahim, Z., Zainal, N.H.: In-situ impregnation of copper nanoparticles on palm empty fruit bunch powder. Adv. Nanoparticles. 2014 (2014)

    Google Scholar 

  4. Tashiro, K., Kobayashi, M.: Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer. 32, 1516–1526 (1991)

    Article  CAS  Google Scholar 

  5. Mojsov, K.D.: Aspergillus enzymes for food industries. In: New and Future Developments in Microbial Biotechnology and Bioengineering, pp. 215–222. Elsevier (2016)

    Chapter  Google Scholar 

  6. Ashour, R.M., Abdel-Magied, A.F., Wu, Q., Olsson, R.T., Forsberg, K.: Green synthesis of metal-organic framework bacterial cellulose nanocomposites for separation applications. Polymers. 12, 1104 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  7. Singh, S., Singh, V.K., Aamir, M., Dubey, M.K., Patel, J.S., Upadhyay, R.S., Gupta, V.K.: Cellulase in pulp and paper industry. In: New and Future Developments in Microbial Biotechnology and Bioengineering, pp. 152–162. Elsevier (2016)

    Chapter  Google Scholar 

  8. Gao, J., Qian, Y., Wang, Y., Qu, Y., Zhong, Y.: Production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of Trichoderma reesei. Biotechnol Biofuels. 10, 1–16 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. John, R.P., Anisha, G.S., Nampoothiri, K.M., Pandey, A.: Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102, 186–193 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. Gordon, S., Hsieh, Y.L.: Cotton: Science and Technology. Woodhead Publishing (2006)

    Google Scholar 

  11. Dufresne, A.: Nanocellulose: a new ageless bionanomaterial. Mater. Today. 16, 220–227 (2013)

    Article  CAS  Google Scholar 

  12. Dufresne, A.: Cellulose nanomaterial reinforced polymer nanocomposites. Curr. Opin. Colloid Interface Sci. 29, 1–8 (2017)

    Article  CAS  Google Scholar 

  13. Waller, P.J., Gándara, F., Yaghi, O.M.: Chemistry of covalent organic frameworks. Acc. Chem. Res. 48, 3053–3063 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. Biswal, B.P., Chaudhari, H.D., Banerjee, R., Kharul, U.K.: Chemically stable covalent organic framework (COF)-Polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation. Chem. Eur. J. 22, 4695–4699 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. Ding, S.Y., Gao, J., Wang, Q., Zhang, Y., Song, W.G., Su, C.Y., Wang, W.: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Mullangi, D., Nandi, S., Shalini, S., Sreedhala, S., Vinod, C.P., Vaidhyanathan, R.: Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation. Sci. Rep. 5, 10876 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ding, X., Guo, J., Feng, X., Honsho, Y., Guo, J., Seki, S., Maitarad, P., Saeki, A., Nagase, S., Jiang, D.: Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew. Chem. Int. Ed. 50, 1289–1293 (2011)

    Article  CAS  Google Scholar 

  18. Lison, D., Huaux, F.: In vitro studies: Ups and downs of cellular uptake. Nat. Nanotechnol. 6, 332 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. Das, G.: Chemical sensing in two dimensional porous covalent organic nanosheets. Chem. Sci. 6, 3931–3939 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shinde, D.B., Aiyappa, H.B., Bhadra, M., Biswal, B.P., Wadge, P., Kandambeth, S., Garai, B., Kundu, T., Kurungot, S., Banerjee, R.: A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte. J. Mater. Chem. A. 4, 2682–2690 (2016)

    Article  CAS  Google Scholar 

  21. Zeng, Y., Zou, R., Zhao, Y.: Covalent organic frameworks for CO2 capture. Adv. Mater. 28, 2855–2873 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. Mullangi, D., Dhavale, V., Shalini, S., Nandi, S., Collins, S., Woo, T., Kurungot, S., Vaidhyanathan, R.: Low-overpotential electrocatalytic water splitting with noble-metal free nanoparticles supported in a sp3 N-Rich Flexible COF. Adv. Energy Mater. 6, 1600110 (2016)

    Article  CAS  Google Scholar 

  23. Feng, X., Ding, X., Jiang, D.: Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. Rocío-Bautista, P., González-Hernández, P., Pino, V., Pasán, J., Afonso, A.M.: Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. TrAC Trends Anal. Chem. 90, 114–134 (2017)

    Article  CAS  Google Scholar 

  25. Cao, S., Li, B., Zhu, R., Pang, H.: Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem. Eng. J. 355, 602–623 (2019)

    Article  CAS  Google Scholar 

  26. Xue, D.X., Cairns, A.J., Belmabkhout, Y., Wojtas, L., Liu, Y., Alkordi, M.H., Eddaoudi, M.: Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. J. Am. Chem. Soc. 135, 7660–7667 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. Li, D.J., Lei, S., Wang, Y.Y., Chen, S., Kang, Y., Gu, Z.G., Zhang, J.: Helical carbon tubes derived from epitaxial Cu-MOF coating on textile for enhanced supercapacitor performance. Dalton Trans. 47, 5558–5563 (2018)

    Article  CAS  PubMed  Google Scholar 

  28. da Silva, P.M., Sierra-Avila, C.A., Hinestroza, J.P.: In situ synthesis of a Cu-BTC metal-organic framework (MOF 199) onto cellulosic fibrous substrates: cotton. Cellulose. 19, 1771–1779 (2012)

    Article  CAS  Google Scholar 

  29. Caballero, B., Trugo, L., Finglas, P.: Encyclopedia of Food Sciences and Nutrition. 1–10: pp. 998-1007 (2003)

    Google Scholar 

  30. Chen, G., Koros, W.J., Jones, C.W.: Hybrid polymer/UiO-66 (Zr) and polymer/NaY fiber sorbents for mercaptan removal from natural gas. ACS Appl. Mater. Interfaces. 8, 9700–9709 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. Pimentel, B.R., Fultz, A.W., Presnell, K.V., Lively, R.P.: Synthesis of water-sensitive metal-organic frameworks within fiber sorbent modules. Ind. Eng. Chem. Res. 56, 5070–5077 (2017)

    Article  CAS  Google Scholar 

  32. Hou, X., Zhou, H., Zhang, J., Cai, Y., Huang, F., Wei, Q.: High adsorption pearl-necklace like composite membrane based on metal-organic framework for heavy metal ion removal. Part. Part. Syst. Charact. 35, 1700438 (2018)

    Article  CAS  Google Scholar 

  33. Karmakar, S., Bhattacharjee, S., De, S.: Experimental and modeling of fluoride removal using aluminum fumarate (AlFu) metal organic framework incorporated cellulose acetate phthalate mixed matrix membrane. J. Environ. Chem. Eng. 5, 6087–6097 (2017)

    Article  CAS  Google Scholar 

  34. Isogai, A., Zhou, Y.: Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nano networks, nanofibers, and nanocrystals. Curr. Opinion Solid State Mater. Sci. 23, 101–106 (2019)

    Article  CAS  Google Scholar 

  35. Iwamoto, S., Abe, K., Yano, H.: The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules. 9, 1022–1026 (2008)

    Article  CAS  PubMed  Google Scholar 

  36. Wang, N., Ouyang, X.K., Yang, L.Y., Omer, A.M.: Fabrication of a magnetic cellulose nanocrystal/metal-organic framework composite for removal of Pb(II) from water. ACS Sustain. Chem. Eng. 5, 10447–10458 (2017)

    Article  CAS  Google Scholar 

  37. Isogai, A.: Cellulose nanofibers: recent progress and future prospects. J. Fiber Sci. Technol. 76, 310–326 (2020)

    Article  Google Scholar 

  38. Mariano, M., El Kissi, N., Dufresne, A.: Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J. Polym. Sci. B Polym. Phys. 52, 791–806 (2014)

    Article  CAS  Google Scholar 

  39. Sirviö, J.A., Ukkola, J., Liimatainen, H.: Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers. Cellulose. 26, 2303–2316 (2019)

    Article  CAS  Google Scholar 

  40. Wang, C., Qian, X., An, X.: In situ green preparation and antibacterial activity of copper-based metal-organic frameworks/cellulose fibers (HKUST-1/CF) composite. Cellulose. 22, 3789–3797 (2015)

    Article  CAS  Google Scholar 

  41. Duan, C., Meng, J., Wang, X., Meng, X., Sun, X., Xu, Y., Zhao, W., Ni, Y.: Synthesis of novel cellulose-based antibacterial composites of Ag nanoparticles@metal organic frameworks@carboxymethylated fibers. Carbohydr. Polym. 193, 82–88 (2018)

    Article  CAS  PubMed  Google Scholar 

  42. Ahmed, I.N., Yang, X.L., Dubale, A.A., Li, R.F., Ma, Y.M., Wang, L.M., Hou, G.H., Guan, R.F., Xie, M.H.: Hydrolysis of cellulose using cellulase physically immobilized on highly stable zirconium based metal-organic frameworks. Bioresour. Technol. 270, 377–382 (2018)

    Article  CAS  PubMed  Google Scholar 

  43. Ma, S., Zhang, M., Nie, J., Tan, J., Yang, B., Song, S.: Design of double-component metal-organic framework air filters with PM 2.5 capture, gas adsorption and antibacterial capacities. Carbohydr. Polym. 203, 415–422 (2019)

    Article  CAS  PubMed  Google Scholar 

  44. Matsumoto, M., Dasari, R.R., Ji, W., Feriante, C.H., Parker, T.C., Marder, S.R., Dichtel, W.R.: Rapid, low temperature formation of imine-linked covalent organic frameworks catalyzed by metal triflates. J. Am. Chem. Soc. 139, 4999–5002 (2017)

    Article  CAS  PubMed  Google Scholar 

  45. Li, Y., Li, Y., Zhao, Q., Li, L., Chen, R., He, C.: Cotton fiber functionalized with 2D covalent organic frameworks for iodine capture. Cellulose. 27, 1517–1529 (2020)

    Article  CAS  Google Scholar 

  46. Ghaemi, F., Amiri, A.: Microcrystalline cellulose/metal-organic framework hybrid as a sorbent for dispersive micro-solid phase extraction of chlorophenols in water samples. J. Chromatogr. A. 2020, 461386 (1626)

    Google Scholar 

  47. Wang, H., Pei, Y., Qian, X., An, X.: Eu-metal organic framework@TEMPO-oxidized cellulose nanofibrils photoluminescence film for detecting copper ions. Carbohydr. Polym. 236, 116030 (2020)

    Article  CAS  PubMed  Google Scholar 

  48. Shi, F.N., Hu, Y., Wang, X., Sun, X., Lu, M., Shi, G., Xu, G.: Decomposition of MOFs for the preparation of nanoporous Co3O4 fibres and sheets with excellent microwave absorption and photocatalytic properties. Dalton Trans. 46, 1936–1942 (2017)

    Article  CAS  PubMed  Google Scholar 

  49. Li, J., Cheng, S., Zhao, Q., Long, P., Dong, J.: Synthesis and hydrogen-storage behavior of metal-organic framework MOF-5. Int. J. Hydrog. Energy. 34, 1377–1382 (2009)

    Article  CAS  Google Scholar 

  50. Yang, Q., Zhang, M., Song, S., Yang, B.: Surface modification of PCC filled cellulose paper by MOF-5 (Zn3 (BDC)2) metal-organic frameworks for use as soft gas adsorption composite materials. Cellulose. 24, 3051–3060 (2017)

    Article  CAS  Google Scholar 

  51. Lei, C., Gao, J., Ren, W., Xie, Y., Abdalkarim, S.Y.H., Wang, S., Ni, Q., Yao, J.: Fabrication of metal-organic frameworks@cellulose aerogels composite materials for removal of heavy metal ions in water. Carbohydr. Polym. 205, 35–41 (2019)

    Article  CAS  PubMed  Google Scholar 

  52. Zhou, S., Strømme, M., Xu, C.: Highly transparent, flexible, and mechanically strong nanopapers of cellulose nanofibers@metal-organic frameworks. Chem. Eur. J. 25, 3515–3520 (2019)

    Article  CAS  PubMed  Google Scholar 

  53. Zhou, S., Apostolopoulou-Kalkavoura, V., Costa, M.V.T., Bergström, L., Strømme, M., Xu, C.: Elastic Aerogels of cellulose Nanofibers@Metal-Organic frameworks for thermal insulation and fire retardancy. Nano-Micro Lett. 12, 9 (2020)

    Article  CAS  Google Scholar 

  54. Cheng, Q., Huang, C., Tomsia, A.P.: Freeze casting: freeze casting for assembling bioinspired structural materials. Adv. Mater. 29, 1703155 (2017)

    Article  CAS  Google Scholar 

  55. Ma, X., Lou, Y., Chen, X.B., Shi, Z., Xu, Y.: Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chem. Eng. J. 356, 227–235 (2019)

    Article  CAS  Google Scholar 

  56. Abbasi, A.R., Yousefshahi, M., Azadbakht, A.: Synthesis and characterization of azine-functionalized zinc cation metal-organic frameworks nanostructures upon silk fibers under ultrasound irradiation, study of pores effect on morphine adsorption affinity. Colloids Surf. A Physicochem. Eng. Asp. 498, 58–65 (2016)

    Article  CAS  Google Scholar 

  57. Han, S., Huang, Y., Watanabe, T., Nair, S., Walton, K.S., Sholl, D.S., Meredith, J.C.: MOF stability and gas adsorption as a function of exposure to water, humid air, SO2, and NO2. Microporous Mesoporous Mater. 173, 86–91 (2013)

    Article  CAS  Google Scholar 

  58. Valencia, L., Abdelhamid, H.N.: Nanocellulose leaf-like zeolitic imidazolate framework (ZIF-L) foams for selective capture of carbon dioxide. Carbohydr. Polym. 213, 338–345 (2019)

    Article  CAS  PubMed  Google Scholar 

  59. Uddin, M.K.: A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 308, 438–462 (2017)

    Article  CAS  Google Scholar 

  60. Al-bishri, H.M., Abdel-Fattah, T.M., Mahmoud, M.E.: Immobilization of [Bmim+ Tf2N] hydrophobic ionic liquid on nano-silica-amine sorbent for implementation in solid phase extraction and removal of lead. J. Ind. Eng. Chem. 18, 1252–1257 (2012)

    Article  CAS  Google Scholar 

  61. Mahmoud, M.E., Al-Bishri, H.M.: Supported hydrophobic ionic liquid on nano silica for adsorption of lead. Chem. Eng. J. 166, 157–167 (2011)

    Article  CAS  Google Scholar 

  62. Da̧browski, A., Hubicki, Z., Podkościelny, P., Robens, E.: Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere. 56, 91–106 (2004)

    Article  PubMed  CAS  Google Scholar 

  63. Rojas, R.: Copper, lead and cadmium removal by Ca Al layered double hydroxides. Appl. Clay Sci. 87, 254–259 (2014)

    Article  CAS  Google Scholar 

  64. Yang, J., Wu, J.X., Lü, Q.F., Lin, T.T.: Facile preparation of lignosulfonate-graphene oxide-polyaniline ternary nanocomposite as an effective adsorbent for Pb(II) ions. ACS Sustain. Chem. Eng. 2, 1203–1211 (2014)

    Article  CAS  Google Scholar 

  65. Cheng, Y., Yang, C., He, H., Zeng, G., Zhao, K., Yan, Z.: Biosorption of Pb(II) ions from aqueous solutions by waste biomass from biotrickling filters: kinetics, isotherms, and thermodynamics. J. Environ. Eng. 142, 4015001 (2016)

    Article  CAS  Google Scholar 

  66. Mahmoud, M.E., Nabil, G.M., Mahmoud, S.M.: High performance nano-zirconium silicate adsorbent for efficient removal of copper(II), cadmium(II) and lead(II). J Environ Chem Eng. 3, 1320–1328 (2015)

    Article  CAS  Google Scholar 

  67. Mahmoud, M.E., Abou Kana, M.T., Hendy, A.A.: Synthesis and implementation of nano-chitosan and its acetophenone derivative for enhanced removal of metals. Int. J. Biol. Macromol. 81, 672–680 (2015)

    Article  CAS  PubMed  Google Scholar 

  68. Mahmoud, M.E., Yakout, A.A., Abdel-Aal, H., Osman, M.M.: High performance SiO2-nanoparticles-immobilized-Penicillium funiculosum for bioaccumulation and solid phase extraction of lead. Bioresour. Technol. 106, 125–132 (2012)

    Article  CAS  PubMed  Google Scholar 

  69. Demilecamps, A., Beauger, C., Hildenbrand, C., Rigacci, A., Budtova, T.: Cellulose-silica aerogels. Carbohydr. Polym. 122, 293–300 (2015)

    Article  CAS  PubMed  Google Scholar 

  70. Liao, Q., Su, X., Zhu, W., Hua, W., Qian, Z., Liu, L., Yao, J.: Flexible and durable cellulose aerogels for highly effective oil/water separation. RSC Adv. 6, 63773–63781 (2016)

    Article  CAS  Google Scholar 

  71. Ren, W., Gao, J., Lei, C., Xie, Y., Cai, Y., Ni, Q., Yao, J.: Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants. Chem. Eng. J. 349, 766–774 (2018)

    Article  CAS  Google Scholar 

  72. Zhu, H., Yang, X., Cranston, E.D., Zhu, S.: Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications. Adv. Mater. 28, 7652–7657 (2016)

    Article  CAS  PubMed  Google Scholar 

  73. Maatar, W., Boufi, S.: Poly (methacylic acid-co-maleic acid) grafted nano fibrillated cellulose as a reusable novel heavy metal ions adsorbent. Carbohydr. Polym. 126, 199–207 (2015)

    Article  CAS  PubMed  Google Scholar 

  74. Yuanming, T., Hao, M., Xia, Z.: Removal of organic dyes and heavy metal ions by functionalized MOFs and MOFs/polymer composite membranes. Prog. Chem. 31, 980 (2019)

    Google Scholar 

  75. Xiao, C., Hassanzadeh Fard, Z., Sarma, D., Song, T.B., Xu, C., Kanatzidis, M.G.: Highly efficient separation of trivalent minor actinides by a layered metal sulfide (KInSn2S6) from acidic radioactive waste. J. Am. Chem. Soc. 139, 16494–16497 (2017)

    Article  CAS  PubMed  Google Scholar 

  76. Xu, S., Zhang, L., Freeman, S.P., Hou, X., Shibata, Y., Sanderson, D., Cresswell, A., Doi, T., Tanaka, A.: Speciation of radio cesium and radioiodine in aerosols from Tsukuba after the Fukushima nuclear accident. Environ. Sci. Technol. 49, 1017–1024 (2015)

    Article  CAS  PubMed  Google Scholar 

  77. Hou, X., Povinec, P.P., Zhang, L., Shi, K., Biddulph, D., Chang, C.C., Fan, Y., Golser, R., Hou, Y., Ješkovský, M., Jull, A.T.: Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget. Environ. Sci. Technol. 47, 3091–3098 (2013)

    Article  CAS  PubMed  Google Scholar 

  78. Mushkacheva, G., Rabinovich, E., Privalov, V., Povolotskaya, S., Shorokhova, V., Sokolova, S., Turdakova, V., Ryzhova, E., Hall, P., Schneider, A.B.., Preston, D.L.: Thyroid abnormalities associated with protracted childhood exposure to 131I from atmospheric emissions from the Mayak weapons facility in Russia. Radiat. Res. 166, 715–722 (2006)

    Article  CAS  PubMed  Google Scholar 

  79. Warchoł, J., Misaelides, P., Petrus, R., Zamboulis, D.: Preparation and application of organo-modified zeolitic material in the removal of chromates and iodides. J. Hazard. Mater. 137, 1410–1416 (2006)

    Article  PubMed  CAS  Google Scholar 

  80. Choung, S., Um, W., Kim, M., Kim, M.G.: Uptake mechanism for iodine species to black carbon. Environ. Sci. Technol. 47, 10349–10355 (2013)

    CAS  PubMed  Google Scholar 

  81. Grogan, K.P., DeVol, T.A.: Online detection of radioactive iodine in aqueous systems through the use of scintillating anion exchange resin. Anal. Chem. 83, 2582–2588 (2011)

    Article  CAS  PubMed  Google Scholar 

  82. Sava Gallis, D.F., Ermanoski, I., Greathouse, J.A., Chapman, K.W., Nenoff, T.M.: Iodine gas adsorption in nanoporous materials: a combined experiment-modeling study. Ind. Eng. Chem. Res. 56, 2331–2338 (2017)

    Article  CAS  Google Scholar 

  83. Lin, L., Guan, H., Zou, D., Dong, Z., Liu, Z., Xu, F., Xie, Z., Li, Y.: A pharmaceutical hydrogen-bonded covalent organic polymer for enrichment of volatile iodine. RSC Adv. 7, 54407–54415 (2017)

    Article  CAS  Google Scholar 

  84. Athon, M.T., Fryxell, G.E., Chuang, C.Y., Santschi, P.H.: Sorption of selected radionuclides on different MnO2 phases. Environ. Chem. 14, 207–214 (2017)

    Article  CAS  Google Scholar 

  85. Sakaida, S., Haraguchi, T., Otsubo, K., Sakata, O., Fujiwara, A., Kitagawa, H.: Fabrication and structural characterization of an ultrathin film of a two-dimensional layered metal-organic framework, {Fe (py)2 [Ni(CN)4]}(py= pyridine). Inorg. Chem. 56, 7606–7609 (2017)

    Article  CAS  PubMed  Google Scholar 

  86. Massasso, G., Long, J., Guerin, C., Grandjean, A., Onida, B., Guari, Y., Larionova, J., Maurin, G., Devautour-Vinot, S.: Understanding the host/guest interactions in Iodine/Hofmann-Type Clathrate Ni(pz)[Ni (CN)4] system. J. Phys. Chem. C. 119, 9395–9401 (2015)

    Article  CAS  Google Scholar 

  87. Wu, Y., Xie, Y., Zhong, F., Gao, J., Yao, J.: Fabrication of bimetallic Hofmann-type metal-organic Frameworks@Cellulose aerogels for efficient iodine capture. Microporous Mesoporous Mater. 306, 110386 (2020)

    Article  CAS  Google Scholar 

  88. Zheng, W., Wang, X., Yu, H., Tao, X., Zhou, Y., Qu, W.: Global trends and diversity in pentachlorophenol levels in the environment and in humans: a meta-analysis. Environ. Sci. Technol. 45, 4668–4675 (2011)

    Article  CAS  PubMed  Google Scholar 

  89. de Morais, P., Stoichev, T., Basto, M.C.P., Vasconcelos, M.T.S.: Extraction and preconcentration techniques for chromatographic determination of chlorophenols in environmental and food samples. Talanta. 89, 1–11 (2012)

    Article  PubMed  CAS  Google Scholar 

  90. Wang, C., Ma, R., Wu, Q., Sun, M., Wang, Z.: Magnetic porous carbon as an adsorbent for the enrichment of chlorophenols from water and peach juice samples. J. Chromatogr. A. 1361, 60–66 (2014)

    Article  CAS  PubMed  Google Scholar 

  91. Igbinosa, E.O., Odjadjare, E.E., Chigor, V.N., Igbinosa, I.H., Emoghene, A.O., Ekhaise, F.O., Igiehon, N.O., Idemudia, O.G.: Toxicological profile of chlorophenols and their derivatives in the environment: the public health perspective. Sci. World J. 2013, 1–11 (2013)

    Google Scholar 

  92. Karasek, F.W., Dickson, L.C.: Model studies of polychlorinated dibenzo-p-dioxin formation during municipal refuse incineration. Science. 237, 754–756 (1987)

    Article  CAS  PubMed  Google Scholar 

  93. Altwicker, E.R., Milligan, M.S.: Formation of dioxins: competing rates between chemically similar precursors and de novo reactions. Chemosphere. 27, 301–307 (1993)

    Article  CAS  Google Scholar 

  94. Wang, Z., Feng, Y., Hao, X., Huang, W., Feng, X.: A novel potential-responsive ion exchange film system for heavy metal removal. J. Mater. Chem. A. 2, 10263–10272 (2014)

    Article  CAS  Google Scholar 

  95. Li, D., Tian, X., Wang, Z., Guan, Z., Li, X., Qiao, H., Ke, H., Luo, L., Wei, Q.: Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chem. Eng. J. 383, 123127 (2020)

    Article  CAS  Google Scholar 

  96. Tofighy, M.A., Mohammadi, T.: Divalent heavy metal ions removal from contaminated water using positively charged membrane prepared from a new carbon nanomaterial and HPEI. Chem. Eng. J. 388, 124192 (2020)

    Article  CAS  Google Scholar 

  97. Yang, X., Shi, K., Zhitomirsky, I., Cranston, E.D.: Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv. Mater. 27, 6104–6109 (2015)

    Article  CAS  PubMed  Google Scholar 

  98. Zhu, L., Zong, L., Wu, X., Li, M., Wang, H., You, J., Li, C.: Shapeable fibrous aerogels of metal-organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano. 12, 4462–4468 (2018)

    Article  CAS  PubMed  Google Scholar 

  99. Shen, C., Mao, Z., Xu, H., Zhang, L., Zhong, Y., Wang, B., Feng, X., Tao, C.A., Sui, X.: Catalytic MOF-loaded cellulose sponge for rapid degradation of chemical warfare agent’s simulant. Carbohydr. Polym. 213, 184–191 (2019)

    Article  CAS  PubMed  Google Scholar 

  100. Panyam, J., Labhasetwar, V.: Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55, 329–347 (2003)

    Article  CAS  PubMed  Google Scholar 

  101. Kazemzadeh-Narbat, M., Lai, B.F., Ding, C., Kizhakkedathu, J.N., Hancock, R.E., Wang, R.: Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials. 34, 5969–5977 (2013)

    Article  CAS  PubMed  Google Scholar 

  102. Ma, Y., Pacan, J.C., Wang, Q., Xu, Y., Huang, X., Korenevsky, A., Sabour, P.M.: Microencapsulation of bacteriophage Felix into chitosan-alginate microspheres for oral delivery. Appl. Environ. Microbiol. 74, 4799–4805 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Trygg, J., Yildir, E., Kolakovic, R., Sandler, N., Fardim, P.: Anionic cellulose beads for drug encapsulation and release. Cellulose. 21, 1945–1955 (2014)

    Article  CAS  Google Scholar 

  104. Duong, H.H.P., Yung, L.Y.L.: Synergistic co-delivery of doxorubicin and paclitaxel using multi-functional micelles for cancer treatment. Int. J. Pharm. 454, 486–495 (2013)

    Article  CAS  PubMed  Google Scholar 

  105. Hu, Q., Yu, J., Liu, M., Liu, A., Dou, Z., Yang, Y.: A low cytotoxic cationic metal-organic framework carrier for controllable drug release. J. Med. Chem. 57, 5679–5685 (2014)

    Article  CAS  PubMed  Google Scholar 

  106. Yadollahi, M., Gholamali, I., Namazi, H., Aghazadeh, M.: Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Int. J. Biol. Macromol. 73, 109–114 (2015)

    Article  CAS  PubMed  Google Scholar 

  107. Abazari, R., Mahjoub, A.R., Ataei, F., Morsali, A., Carpenter-warren, C.L., Mehdizadeh, K., Slawin, A.M.Z.: chitosan immobilization on bio-mof nanostructures: a biocompatible pH-responsive nanocarrier for doxorubicin release on mcf-7 cell lines of human breast cancer. Inorg. Chem. 57, 13364–13379 (2018)

    Article  CAS  PubMed  Google Scholar 

  108. Keskin, S., Kızılel, S.: Biomedical applications of metal organic frameworks. Ind. Eng. Chem. Res. 50, 1799–1812 (2011)

    Article  CAS  Google Scholar 

  109. Davis, M.E.: Ordered porous materials for emerging applications. Nature. 417, 813–821 (2002)

    Article  CAS  PubMed  Google Scholar 

  110. Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J.F., Heurtaux, D., Clayette, P., Kreuz, C., Chang, J.S.: Porous metal organic framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172–178 (2010)

    Article  CAS  PubMed  Google Scholar 

  111. Horcajada, P., Serre, C., Maurin, G., Ramsahye, N.A., Balas, F., Vallet-Regi, M., Sebban, M., Taulelle, F., Férey, G.: Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008)

    Article  CAS  PubMed  Google Scholar 

  112. Chalati, T., Horcajada, P., Couvreur, P., Serre, C., Ben Yahia, M., Maurin, G., Gref, R.: Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. Nanomedicine. 6, 1683–1695 (2011)

    Article  CAS  PubMed  Google Scholar 

  113. Taylor-Pashow, K.M., Della Rocca, J., Xie, Z., Tran, S., Lin, W.: Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 131, 14261–14263 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Simon-Yarza, T., Baati, T., Neffati, F., Njim, L., Couvreur, P., Serre, C., Gref, R., Najjar, M.F., Zakhama, A., Horcajada, P.: In vivo behavior of MIL-100 nanoparticles at early times after intravenous administration. Int. J. Pharm. 511, 1042–1047 (2016)

    Article  CAS  PubMed  Google Scholar 

  115. Rodriguez-Ruiz, V., Maksimenko, A., Anand, R., Monti, S., Agostoni, V., Couvreur, P., Lampropoulou, M., Yannakopoulou, K., Gref, R.: Efficient “green” encapsulation of a highly hydrophilic anticancer drug in metal-organic framework nanoparticles. J. Drug Target. 23, 759–767 (2015)

    Article  CAS  PubMed  Google Scholar 

  116. Zimpel, A., Prei, T., Röder, R., Engelke, H., Ingrisch, M., Peller, M., Rädler, J.O., Wagner, E., Bein, T., Lächelt, U., Wuttke, S.: Imparting functionality to MOF nanoparticles by external surface selective covalent attachment of polymers. Chem. Mater. 28, 3318–3326 (2016)

    Article  CAS  Google Scholar 

  117. Hidalgo, T., Giménez-Marqués, M., Bellido, E., Avila, J., Asensio, M.C., Salles, F., Lozano, M.V., Guillevic, M., Simón-Vázquez, R., González-Fernández, A., Serre, C.: Chitosan-coated mesoporous MIL-100 (Fe) nanoparticles as improved bio-compatible oral nanocarriers. Sci. Rep. 7, 43099 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Javanbakht, S., Namazi, H.: Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater. Sci. Eng. C. 87, 50–59 (2018)

    Article  CAS  Google Scholar 

  119. Javanbakht, S., Pooresmaeil, M., Namazi, H.: Green one-pot synthesis of carboxymethylcellulose/Zn-based metal-organic framework/graphene oxide bio-nanocomposite as a nanocarrier for drug delivery system. Carbohydr. Polym. 208, 294–301 (2019)

    Article  CAS  PubMed  Google Scholar 

  120. Javanbakht, S., Pooresmaeil, M., Hashemi, H., Namazi, H.: Carboxymethylcellulose capsulated Cu-based metal-organic framework-drug nanohybrid as a pH-sensitive nanocomposite for ibuprofen oral delivery. Int. J. Biol. Macromol. 119, 588–596 (2018)

    Article  CAS  PubMed  Google Scholar 

  121. Nippon Paper Industries’ CNF “Cellenpia” Used for Tires in World-First, https://www.nipponpapergroup.com/english/news/year/2019/news191025004611.html.

  122. Wu, B., Wang, S., Tang, J., Lin, N.: Nanocellulose in high-value applications for reported trial and commercial products. In: Advanced Functional Materials from Nanopolysaccharidesm, pp. 389–409 (2019)

    Chapter  Google Scholar 

  123. Gao, F., Ding, Z., Meng, S.: Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage. Sci. Rep. 3, 1882 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  124. Xu, F., Jin, S., Zhong, H., Wu, D., Yang, X., Chen, X., Wei, H., Fu, R., Jiang, D.: Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci. Rep. 5, 8225 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Duhovic, S., Dincă, M.: Synthesis and electrical properties of covalent organic frameworks with heavy chalcogens. Chem. Mater. 27, 5487–5490 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Science Foundation of Hainan Province (2019RC166, 2019RC110 and 2019RC250) and National Natural Science Foundation of China (21965011) for financial support. Dr Vasanthakumar acknowledges the Postdoctoral Funding from Hainan Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Arumugam, V., Gao, Y. (2022). Synthesis and Applications of Organic Framework-Based Cellulosic Nanocomposites. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-89621-8_26

Download citation

Publish with us

Policies and ethics