Skip to main content

Systems Medicine Applied to Epidemiology

  • Chapter
  • First Online:
Principles of Genetics and Molecular Epidemiology

Abstract

Systems biology can be defined as the analysis of interactions with different biological systems at different complex levels by using different network approaches. Such advances have permeated to different fields, including those of health known as systems medicine. Such a novel tool has been defined as a holistic approach where human health is integrated from different perspectives, from biomedical to environmental and social. Interestingly, nowadays, there are several examples of applications of such technologies to clinics, for instance, whole-genome association studies or digital health applications that have shown to be quite helpful to public health. Therefore, in the present chapter, we resume some of the main tools of systems biology and its applications to health through systems medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ODEs:

Ordinary differential equations

GRNs:

Gene regulatory networks

References

  1. Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet. 2001;2:343–72.

    Article  CAS  PubMed  Google Scholar 

  2. Kitano H. Systems biology: a brief overview. Science. 2002;295:1662–4.

    Article  CAS  PubMed  Google Scholar 

  3. Trewavas A. A brief history of systems biology: “Every object that biology studies is a system of systems.” Francois Jacob (1974). Plant Cell. 2006;18:2420–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jensen HJ. Self-organized criticality: emergent complex behavior in physical and biological systems. Cambridge University Press, Cambridge, UK; 1998.

    Google Scholar 

  5. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science. 2001;292:929–34.

    Article  CAS  PubMed  Google Scholar 

  6. Bhalla US, Iyengar R. Emergent properties of networks of biological signaling pathways. Science. 1999;283:381–7.

    Article  CAS  PubMed  Google Scholar 

  7. Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol. 2003;15(2):221–31. https://doi.org/10.1016/s0955-0674(03)00017-6. PMID: 12648679.

  8. Breitling R. What is systems biology? Front Physiol. 2010;1:9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lynch M. The evolution of genetic networks by non-adaptive processes. Nat Rev Genet. 2007;8:803–13.

    Article  CAS  PubMed  Google Scholar 

  10. Lynch M. The frailty of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences. (2007), 104 (suppl 1). 8597–8604; https://doi.org/10.1073/pnas.0702207104.

  11. Tavassoly I, Goldfarb J, Iyengar R. Systems biology primer: the basic methods and approaches. Essays Biochem. 2018;62:487–500.

    Article  PubMed  Google Scholar 

  12. Chuang H-Y, Hofree M, Ideker T. A decade of systems biology. Annu Rev Cell Dev Biol. 2010;26:721–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu X, Gerstein M, Snyder M. Getting connected: analysis and principles of biological networks. Genes Dev. 2007;21:1010–24.

    Article  CAS  PubMed  Google Scholar 

  14. Barabási A-L, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.

    Article  PubMed  Google Scholar 

  15. Ryan CJ, Roguev A, Patrick K, et al. Hierarchical modularity and the evolution of genetic interactomes across species. Mol Cell. 2012;46:691–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han J-DJ, Bertin N, Hao T, et al. Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature. 2004;430:88–93.

    Article  CAS  PubMed  Google Scholar 

  17. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP. Causal protein-signaling networks derived from multiparameter single-cell data. Science. 2005;308:523–9.

    Article  CAS  PubMed  Google Scholar 

  18. Sachs K, Gifford D, Jaakkola T, Sorger P, Lauffenburger DA. Bayesian network approach to cell signaling pathway modeling. Sci STKE. 2002;2002:e38.

    Article  Google Scholar 

  19. Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR. A primer on learning in Bayesian networks for computational biology. PLoS Comput Biol. 2007;3:e129.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jha SK, Clarke EM, Langmead CJ, Legay A, Platzer A, Zuliani P. A Bayesian approach to model checking biological systems. Comput Meth Syst Biol. 2009;5688:218–34.

    Article  Google Scholar 

  21. Albert R. Scale-free networks in cell biology. J Cell Sci. 2005;118:4947–57.

    Article  CAS  PubMed  Google Scholar 

  22. Barabási A-L. Scale-free networks: a decade ``and beyond. Science. 2009;325:412–3.

    Google Scholar 

  23. Hornung G, Barkai N. Noise propagation and signaling sensitivity in biological networks: a role for positive feedback. PLoS Comput Biol. 2008;4:e8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Milgram S. The small-world problem. PsycEXTRA Dataset. 1967; https://doi.org/10.1037/e400002009-005.

  25. Rives AW, Galitski T. Modular organization of cellular networks. Proc Natl Acad Sci U S A. 2003;100:1128–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci. 2006;103:8577–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002;298:824–7.

    Article  CAS  PubMed  Google Scholar 

  28. Tyson JJ, Novák B. Functional motifs in biochemical reaction networks. Annu Rev Phys Chem. 2010;61:219–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 2007;8:450–61.

    Article  CAS  PubMed  Google Scholar 

  30. Tyson JJ, Chen K, Novak B. Network dynamics and cell physiology. Nat Rev Mol Cell Biol. 2001;2:908–16.

    Article  CAS  PubMed  Google Scholar 

  31. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rual J-F, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437:1173–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kauffman SA. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol. 1969;22:437–67.

    Article  CAS  PubMed  Google Scholar 

  34. Thomas R, Kaufman M. Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behavior. Chaos. 2001;11:170–9.

    Article  PubMed  Google Scholar 

  35. Thomas R, Kaufman M. Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos. 2001;11:180–95.

    Article  PubMed  Google Scholar 

  36. Bartocci E, Lió P. Computational modeling, formal analysis, and tools for systems biology. PLoS Comput Biol. 2016;12:e1004591.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schaub MA, Henzinger TA, Fisher J. Qualitative networks: a symbolic approach to analyze biological signaling networks. BMC Syst Biol. 2007;1:4.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Alur R, Courcoubetis C, Henzinger TA, Ho P-H. Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. Hybrid Syst. 1993;736:209–29.

    Article  Google Scholar 

  39. Fromentin J, Eveillard D, Roux O. Hybrid modeling of biological networks: mixing temporal and qualitative biological properties. BMC Syst Biol. 2010; https://doi.org/10.1186/1752-0509-4-79.

  40. Boran ADW, Iyengar R. Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel. 2010;13:297–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hansen J, Zhao S, Iyengar R. Systems pharmacology of complex diseases. Ann N Y Acad Sci. 2011;1245:E1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wolkenhauer O. Systems Medicine: Integrative, Qualitative and Computational Approaches. 1st Ed. 2020 Academic Press. Cambridge, Massachusetts US.

    Google Scholar 

  43. Kanodia AK, Kim I, Sturmberg JP. A personalized systems medicine approach to refractory rumination. J Eval Clin Pract. 2011;17:515–9.

    Article  PubMed  Google Scholar 

  44. Wang L, Eftekhari P, Schachner D, et al. Novel interactomics approach identifies ABCA1 as direct target of evodiamine, which increases macrophage cholesterol efflux. Sci Rep. 2018;8:11061.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fisher CP, Plant NJ, Moore JB, Kierzek AM. QSSPN: dynamic simulation of molecular interaction networks describing gene regulation, signalling and whole-cell metabolism in human cells. Bioinformatics. 2013;29:3181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hartung T, FitzGerald RE, Jennings P, Mirams GR, Peitsch MC, Rostami-Hodjegan A, Shah I, Wilks MF, Sturla SJ. Systems toxicology: real world applications and opportunities. Chem Res Toxicol. 2017;30:870–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nikpay M, Goel A, Won H-H, et al. A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mäkinen V-P, Civelek M, Meng Q, et al. Integrative genomics reveals novel molecular pathways and gene networks for coronary artery disease. PLoS Genet. 2014;10:e1004502.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Smith JA, Ware EB, Middha P, Beacher L, Kardia SLR. Current applications of genetic risk scores to cardiovascular outcomes and subclinical phenotypes. Curr Epidemiol Rep. 2015;2:180–90.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fiandaca MS, Mapstone M, Connors E, Jacobson M, Monuki ES, Malik S, Macciardi F, Federoff HJ. Systems healthcare: a holistic paradigm for tomorrow. BMC Syst Biol. 2017;11:142.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Oh S-H, Lee SY, Han C. The effects of social media use on preventive behaviors during infectious disease outbreaks: the mediating role of self-relevant emotions and public risk perception. Health Commun. 2020:1–10.

    Google Scholar 

Download references

Acknowledgments

This chapter is part of a registered project at the Instituto Nacional de Geriatría with the number DI-PI-003/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Gomez-Verjan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yustis-Rubio, J.C., Gomez-Verjan, J.C. (2022). Systems Medicine Applied to Epidemiology. In: Gomez-Verjan, J.C., Rivero-Segura, N.A. (eds) Principles of Genetics and Molecular Epidemiology. Springer, Cham. https://doi.org/10.1007/978-3-030-89601-0_16

Download citation

Publish with us

Policies and ethics