Skip to main content

A Review of Machine Learning Models in Renewable Energy

  • Chapter
  • First Online:
IoT for Sustainable Smart Cities and Society

Part of the book series: Internet of Things ((ITTCC))

Abstract

Renewable energy is gradually being used to offset the impact of climate change and global warming. Various forecasting techniques have been introduced to enhance renewable energy prediction ability. The objective of this research is structured as follows: Firstly, this study examines machine learning methods for forecasting renewable energy resources. Secondly, this survey demonstrates the process implemented in the machine learning model for forecasting the performance of the machine learning model. Thirdly, the analyses of renewable energy forecasting models were conducted on the basis of mean absolute percentage error and correlation coefficient. Finally, at the conclusion of this study, several possible future work opportunities were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, H. Z., Lei, Z. X., & Zhang, X. (2019). A review of deep learning for renewable energy forecasting. Energy Conversion and Management, 198, 111799.

    Article  Google Scholar 

  2. Olabi, A. G. (2017). Renewable and energy storage system. Energy, 136, 1–6.

    Article  Google Scholar 

  3. Zendehboudi, A., Baseer, M. A., & Saidur, R. (2018). Application of support vector machine models for forecasting solar and wind energy resources: A review. Journal of Cleaner Production, 199, 272–285.

    Article  Google Scholar 

  4. Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.

    MathSciNet  MATH  Google Scholar 

  5. Qiu, J., Wu, Q., Ding, G., Xu, Y., & Feng, S. (2016). A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing, 2016, 67.

    Article  Google Scholar 

  6. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, L., Wang, G., et al. (2017). Recent advances in convolutional neural networks. Pattern Recognition, 1, 1–24.

    Google Scholar 

  7. Amasyali, K., & El-Gohary, N. M. (2018). A review of data-driven building energy consumption prediction studies. Renewable and Sustainable Energy Reviews, 81, 1192–1205.

    Article  Google Scholar 

  8. Voyant, C., Notton, G., Kalogirou, S., Nivet, M.-L., Paoli, C., Motte, F., & Fouilloy, A. (2017). Machine learning methods for solar radiation forecasting: A review. Renewable Energy, 105, 569–582.

    Article  Google Scholar 

  9. Das, U. K., Tey, K. S., Seyedmahmoudian, M., Mekhilef, S., Idris, M. Y. I., Deventer, W. V., Horan, B., & Stojcevski, A. (2018). Forecasting of photovoltaic power generation and model optimization: A review. Renewable and Sustainable Energy Reviews, 81, 912–928.

    Article  Google Scholar 

  10. Ahmed, A., & Khalid, M. (2019). A review on the selected applications of forecasting models in renewable power systems. Renewable and Sustainable Energy Reviews, 100, 9–21.

    Article  Google Scholar 

  11. Mosavi, A., Salimi, M., Ardabili, S. F., Rabczuk, T., Shamshirband, S., & Varkonyi-Koczy, A. R. (2019). State of the art of machine learning models in energy systems, a systematic review. Energies, 12, 130.

    Article  Google Scholar 

  12. Bermejo, J.F.; Fernandez, J.F.G.; Polo,F.O.;Marquez, A.C.A review of the use of artificial neural network models for energy and reliability prediction. A study of the solar PV, hydraulic and wind energy sources. Applied Sciences 2019, 9, 1844.

    Google Scholar 

  13. Mellit, A., Massi Pavan, A., Ogliari, E., Leva, S., & Lughi, V. (2020). Advanced methods for photovoltaic output power forecasting: A review. Applied Sciences, 10, 487.

    Article  Google Scholar 

  14. Sharifzadeh, M., Sikinioti-Lock, A., & Shah, N. (2019). Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian process regression. Renewable and Sustainable Energy Reviews, 108, 513–538.

    Article  Google Scholar 

  15. Howland, M. F., & Dabiri, J. O. (2019). Wind farm modeling with interpretable physics-informed machine learning. Energies, 12, 2716.

    Article  Google Scholar 

  16. Demolli, H., Dokuz, A. S., Ecemis, A., & Gokcek, M. (2019). Wind power forecasting based on daily wind speed data using machine learning algorithms. Energy Conversion and Management, 198, 111823.

    Article  Google Scholar 

  17. Howland, M. F., & Dabiri, J. O. (2019). Wind farm modeling with interpretable physics-informed machine learning. Energies, 12, 2716.

    Article  Google Scholar 

  18. Khan, M., Liu, T., & Ullah, F. (2019). A new hybrid approach to forecast wind power for large scale wind turbine data using deep learning with tensorflow framework and principal component analysis. Energies, 12, 2229.

    Article  Google Scholar 

  19. Ma, Y.-J., & Zhai, M.-Y. (2019). A dual-step integrated machine learning model for 24h-ahead wind energy generation prediction based on actual measurement data and environmental factors. Applied Sciences, 9, 2125.

    Article  Google Scholar 

  20. Mujeeb, S., Alghamdi, T. A., Ullah, S., Fatima, A., Javaid, N., & Saba, T. (2019). Exploiting deep learning for wind power forecasting based on big data analytics. Applied Sciences, 9, 4417.

    Article  Google Scholar 

  21. Fischetti, M., & Fraccaro, M. (2019). Machine learning meets mathematical optimization to predict the optimal production of offshore wind parks. Computers and Operations Research, 106, 289–297.

    Article  MathSciNet  MATH  Google Scholar 

  22. Harbola, S., & Coors, V. (2019). One dimensional convolutional neural network architectures for wind prediction. Energy Conversion and Management, 195, 70–75.

    Article  Google Scholar 

  23. Srpak, D., Havaš, L., Skok, S., Polajžer, B. (2019). Reducing wind power forecast error based on machine learning algorithms and producers merging. In Proceedings of the 2019 IEEE international conference on environment and electrical engineering and 2019 IEEE industrial and commercial power systems Europe, Genoa, Italy, 11–14 June 2019.

    Google Scholar 

  24. Yu, R., Liu, Z., Li, X., Lu, W., Ma, D., Yu, M., Wang, J., & Li, B. (2019). Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space. Applied Energy, 238, 249–257.

    Article  Google Scholar 

  25. Mujeeb, S., Javaid, N., Gul, H., Daood, N., Shabbir, S., Arif, A. (2019) Wind power forecasting based on efficient deep convolution neural networks. In Proceedings of the 3PGCIC Conference, Antwerp, Belgium, 7–9 November 2019.

    Google Scholar 

  26. Jiao, R., Huang, X., Ma, X., Han, L., & Tian, W. (2018). A model combining stacked auto encoder and back propagation algorithm for short-term wind power forecasting. IEEE Access, 6, 17851–17858.

    Article  Google Scholar 

  27. Huang, C. J., & Kuo, P. H. (2018). A short-term wind speed forecasting model by using artificial neural networks with stochastic optimization for renewable energy systems. Energies, 11, 2777.

    Article  Google Scholar 

  28. Zhu, Q., Chen, J., Zhu, L., Duan, X., & Liu, Y. (2018). Wind speed prediction with spatio–temporal correlation: A deep learning approach. Energies, 11, 705.

    Article  Google Scholar 

  29. Chang, G. W., Lu, H. J., Chang, Y. R., & Lee, Y. D. (2017). An improved neural network-based approach for short-term wind speed and power forecast. Renewable Energy, 105, 301–311.

    Article  Google Scholar 

  30. Wang, H. Z., Li, G. Q., Wang, G. B., Peng, J. C., Jiang, H., & Liu, Y. T. (2017). Deep learning based ensemble approach for probabilistic wind power forecasting. Applied Energy, 188, 56–70.

    Article  Google Scholar 

  31. Zameer, A., Arshad, J., Khan, A., & Raja, M. A. Z. (2017). Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks. Energy Conversion and Management, 134, 361–372.

    Article  Google Scholar 

  32. Eze, E. C., & Chatwin, C. R. (2019). Enhanced recurrent neural network for short-term wind farm power output prediction. Journal of Applied Sciences, 5, 28–35.

    Google Scholar 

  33. Yu, R., Gao, J., Yu, M., Lu, W., Xu, T., Zhao, M., Zhang, J., Zhang, R., & Zhang, Z. (2019). LSTM-EFG for wind power forecasting based on sequential correlation features. Future Generation Computer Systems, 93, 33–42.

    Article  Google Scholar 

  34. Cardona, J. L., Howland, M. F., & Dabiri, J. O. (2019). Seeing the wind: Visual wind speed prediction with a coupled convolutional and recurrent neural network. arXiv, arXiv:1905.13290.

    Google Scholar 

  35. Cali, U., & Sharma, V. (2019). Short-term wind power forecasting using long-short term memory based recurrent neural network model and variable selection. International Journal of Smart Grid and Clean Energy, 8, 103–110.

    Article  Google Scholar 

  36. Zhang, J., Jiang, X.; Chen, X., Li, X.; Guo, D., Cui, L. (2019, April 1) Wind power generation prediction based on LSTM. In Proceedings of the 4th International Conference on Mathematics and Artificial Intelligence, Chegndu China, pp. 85–89.

    Google Scholar 

  37. Zhang, Z., Ye, L., Qin, H., Liu, Y., Wang, C., Yu, X., Yin, X., & Li, J. (2019). Wind speed prediction method using shared weight long short-term memory network and gaussian process regression. Applied Energy, 247, 270–284.

    Article  Google Scholar 

  38. Chen, J., Zeng, G., Zhou, W., Du, W., & Lu, K. (2018). Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization. Energy Conversion and Management, 165, 681–695.

    Article  Google Scholar 

  39. Khosravi, A., Machado, L., & Nunes, R. (2018). Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil. Applied Energy, 224, 550–566.

    Article  Google Scholar 

  40. Feng, C., Cui, M., Hodge, B.-M., & Zhang, J. (2017). A data-driven multi-model methodology with deep feature selection for short-term wind forecasting. Applied Energy, 190, 1245–1257.

    Article  Google Scholar 

  41. Lahouar, A., & Slama, J. B. (2017). Hour-ahead wind power forecast based on random forests. Renewable Energy, 109, 529–541.

    Article  Google Scholar 

  42. Li, L. L., Zhao, X., Tseng, M. L., & Tan, R. R. (2020). Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm. Journal of Cleaner Production, 242, 118447.

    Article  Google Scholar 

  43. Lin, K. P., Pai, P. F., & Ting, Y. J. (2019). Deep belief networks with genetic algorithms in forecasting wind speed. IEEE Access, 7, 99244–99253.

    Article  Google Scholar 

  44. Sharifian, A., Ghadi, M. J., Ghavidel, S., Li, L., & Zhang, J. (2018). A new method based on type-2 fuzzy neural network for accurate wind power forecasting under uncertain data. Renewable Energy, 120, 220–230.

    Article  Google Scholar 

  45. Li, R., & Jin, Y. (2018). A wind speed interval prediction system based on multi-objective optimization for machine learning method. Applied Energy, 228, 2207–2220.

    Article  Google Scholar 

  46. Santhosh, M., Venkaiah, C., & Kumar, D. M. V. (2019). Short-term wind speed forecasting approach using ensemble empirical mode decomposition and deep Boltzmann machine. Sustainable Energy Grids and Networks, 19, 100242.

    Article  Google Scholar 

  47. Wang, L., Li, X., & Bai, Y. (2018). Short-term wind speed prediction using an extreme learning machine model with error correction. Energy Conversion and Management, 162, 239–250.

    Article  Google Scholar 

  48. Wang, G., Jia, G., Liu, J., & Zhang, H. (2020). A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning. Renewable Energy, 145, 2426–2434.

    Article  Google Scholar 

  49. Wang, Y., Wang, H. B., Srinivasan, D., & Hu, Q. H. (2019). Robust functional regression for wind speed forecasting based on sparse Bayesian learning. Renewable Energy, 132, 43–60.

    Article  Google Scholar 

  50. Sun, S., Qiao, H., Wang, S., & Wei, Y. (2017). A new dynamic integrated approach for wind speed forecasting. Applied Energy, 197, 151–162.

    Article  Google Scholar 

  51. Liu, H., Mi, X., & Li, Y. (2018). Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network. Energy Conversion and Management, 166, 120–131.

    Article  Google Scholar 

  52. Atique, S.; Noureen, S.; Roy, V.; Subburaj, V.; Bayne, S.; Macfie, J. (2019). Forecasting of total daily solar energy generation using ARIMA: A case study. In Proceedings of the 2019 IEEE 9th annual computing and communication workshop and conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 114–119.

    Google Scholar 

  53. Alsharif, M. H., Younes, M. K., & Kim, J. (2019). Time series ARIMA model for prediction of daily and monthly average global solar radiation: The case study of Seoul, South Korea. Symmetry, 11, 240.

    Article  Google Scholar 

  54. Aslam, M., Lee, J.-M., Kim, H.-S., Lee, S.-J., & Hong, S. (2019). Deep learning models for long-term solar radiation forecasting considering microgrid installation: A comparative study. Energies, 13, 147.

    Article  Google Scholar 

  55. Rana, M., & Rahman, A. (2020). Multiple steps ahead solar photovoltaic power forecasting based on univariate machine learning models and data re-sampling. Sustainable Energy Grids and Networks, 21, 100286.

    Article  Google Scholar 

  56. Bajpai, A., Duchon, M. (2019) A hybrid approach of solar power forecasting using machine learning. In Proceedings of the 3rd international conference on smart grid and smart cities, Berkeley, CA, USA, 25–28 June 2019.

    Google Scholar 

  57. Kim, S. G., Jung, J. Y., & Sim, M. K. (2019). A two-step approach to solar power generation prediction based on weather data using machine learning. Sustainability, 11, 1501.

    Article  Google Scholar 

  58. Torres-Barrán, A., Alonso, Á., & Dorronsoro, J. R. (2019). Regression tree ensembles for wind energy and solar radiation prediction. Neurocomputing, 326, 151–160.

    Article  Google Scholar 

  59. Saloux, E., & Candanedo, J. A. (2018). Forecasting district heating demand using machine learning algorithms. Energy Procedia, 149, 59–68.

    Article  Google Scholar 

  60. Feng, C., & Zhang, J. (2018). Hourly-similarity based solar forecasting using multi-model machine learning blending. arXiv, arXiv:1803.03623.

    Google Scholar 

  61. Zambrano, A. F., & Giraldo, L. F. (2020). Solar-irradiance forecasting models without on-site training measurements. Renewable Energy, 152, 557–566.

    Article  Google Scholar 

  62. Khandakar, A., Chowdhury, M. E. H., Khoda Kazi, M., Benhmed, K., Touati, F., Al-Hitmi, M., & Gonzales, J. S. (2019). Machine learning based photovoltaics (PV) power prediction using different environmental parameters of Qatar. Energies, 12, 2782.

    Article  Google Scholar 

  63. Dorado-Moreno, M., Navarin, N., Gutierrez, P. A., Prieto, L., Sperduti, A., Salcedo-Sanz, S., & Hervas-Martinez, C. (2020). Multi-task learning for the prediction of wind power ramp events with deep neural networks. Neural Networks, 123, 401–411.

    Article  Google Scholar 

  64. Rodríguez, F., Fleetwood, A., Galarza, A., & Fontán, L. (2018). Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control. Renewable Energy, 126, 855–864.

    Article  Google Scholar 

  65. Leva, S., Dolara, A., Grimaccia, F., Mussetta, M., & Sahin, E. (2017). Analysis and validation of 24 hours ahead neural network forecasting for photovoltaic output power. Mathematics and Computers in Simulation, 131, 88–100.

    Article  MathSciNet  MATH  Google Scholar 

  66. Sun, Y., Venugopal, V., & Brandt, A. R. (2019). Short-term solar power forecast with deep learning: Exploring optimal input and output configuration. Solar Energy, 188, 730–741.

    Article  Google Scholar 

  67. Camila, C. J., Cardemil, J. M., Droguett, E. L., & Behzad, M. (2020). Assessment of deep learning techniques for prognosis of solar thermal systems. Renewable Energy, 145, 2178–2191.

    Article  Google Scholar 

  68. AlKandari, M., & Ahmad, I. (2019). Solar power generation forecasting using ensemble approach based on deep learning and statistical methods. Applied Computing and Informatics.

    Google Scholar 

  69. Chen, J., Yu, J., Song, M., & Valdmanis, V. (2019). Factor decomposition and prediction of solar energy consumption in the United States. Journal of Cleaner Production, 234, 1210–1220.

    Article  Google Scholar 

  70. Wen, L. L., Zhou, K. L., Yang, S. L., & Lu, X. H. (2019). Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting. Energy, 171, 1053–1065.

    Article  Google Scholar 

  71. Qing, X., & Niu, Y. (2018). Hourly day-ahead solar irradiance prediction using weather forecasts by lstm. Energy, 148, 461–468.

    Article  Google Scholar 

  72. Abdel-Nasser, M., & Mahmoud, K. (2017). Accurate photovoltaic power forecasting models using deep LSTM-RNN. In Neural computing and applications (pp. 1–14). Springer.

    Google Scholar 

  73. Monjoly, S., André, M., Calif, R., & Soubdhan, T. (2017). Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach. Energy, 119, 288–298.

    Article  Google Scholar 

  74. Lin, G.-Q., Li, L.-L., Tseng, M.-L., Liu, H.-M., Yuan, D.-D., & Tan, R. (2020). An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation. Journal of Cleaner Production, 253, 119966.

    Article  Google Scholar 

  75. Liu, Y., Zhou, Y., Chen, Y., Wang, D., Wang, Y., & Zou, Y. (2020). Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study inChina. Renewable Energy, 146, 1101–1112.

    Article  Google Scholar 

  76. Fan, J., Wu, L., Ma, X., Zhou, H., & Zhang, F. (2020). Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions. Renewable Energy, 145, 2034–2045.

    Article  Google Scholar 

  77. Torabi, M., Mosavi, A., Ozturk, P., Varkonyi-Koczy, A., & Istvan, V. (2018). A hybrid machine learning approach for daily prediction of solar radiation. In Recent advances in technology research and education (pp. 266–274). Springer.

    Google Scholar 

  78. Dehghani, M., Riahi-Madvar, H., Hooshyaripor, F., Mosavi, A., Shamshirband, S., Zavadskas, E. K., & Chau, K.-W. (2019). Prediction of hydropower generation using grey wolf optimization adaptive neuro-fuzzy inference system. Energies, 12, 289.

    Article  Google Scholar 

  79. Shayan, E., Zare, V., & Mirzaee, I. (2018). Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Conversion and Management, 159, 30–41.

    Article  Google Scholar 

  80. Ozbas, E. E., Aksu, D., Ongen, A., Aydin, M. A., & Ozcan, H. K. (2019). Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms. International Journal of Hydrogen Energy, 44, 17260–17268.

    Article  Google Scholar 

  81. Samadi, S. H., Ghobadian, B., & Nosrati, M. (2019). Prediction of higher heating value of biomass materials based on proximate analysis using gradient boosted regression trees method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.

    Google Scholar 

  82. Elmaz, F., Yücel, O., & Mutlu, A. Y. (2019). Predictive modeling of biomass gasification with machine learning-based regression methods. Energy, 191, 116541.

    Article  Google Scholar 

  83. García Nieto, P. J., García-Gonzalo, E., Sánchez Lasheras, F., Paredes-Sánchez, J. P., & Riesgo Fernández, P. (2019). Forecast of the higher heating value in biomass torrefaction by means of machine learning techniques. Journal of Computational and Applied Mathematics, 357, 284–301.

    Article  MathSciNet  MATH  Google Scholar 

  84. Ali, M., & Prasad, R. (2019). Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition. Renewable and Sustainable Energy Reviews, 104, 281–295.

    Article  Google Scholar 

  85. Cornejo-Bueno, L., Garrido-Merchán, E. C., Hernández-Lobato, D., & Salcedo-Sanz, S. (2018). Bayesian optimization of a hybrid system for robust ocean wave features prediction. Neurocomputing, 275, 818–828.

    Article  Google Scholar 

  86. Kavousi-Fard, A., & Su, W. (2017). A combined prognostic model based on machine learning for tidal current prediction. IEEE Transactions on Geoscience and Remote Sensing, 55, 3108–3114.

    Article  Google Scholar 

  87. Michael, D., Thomas, A., & Adcock, A. (2018). Prediction of tidal currents using Bayesian machine learning. Journal of Ocean Engineering, 158, 221–231.

    Article  Google Scholar 

  88. Safari, N., Ansari, O.A., Zare, A., Chung, C.Y. (2017). A novel decomposition-based localized short-term tidal current speed and direction prediction model. In Proceedings of the IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017.

    Google Scholar 

  89. Gangwani, P., Soni, J., Upadhyay, H., & Joshi, S. (2020). A deep learning approach for modeling of geothermal energy prediction. Computer Science and Information Security, 62–65.

    Google Scholar 

  90. Baruque, B., Porras, S., Jove, E., & Calvo-Rolle, J. L. (2019). Geothermal heat exchanger energy prediction based on time series and monitoring sensors optimization. Energy, 171, 49–60.

    Article  Google Scholar 

  91. Rohani, A., Taki, M., & Abdollahpour, M. (2018). A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I). Renewable Energy, 115, 411–422.

    Article  Google Scholar 

  92. Liu, H., Tian, H. Q., & Li, Y. F. (2015). Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms. Energy Conversion and Management, 100, 16–22.

    Article  Google Scholar 

  93. Hamed, H. H. A. (2019). A novel approach for harmonic tidal currents constitutions forecasting using hybrid intelligent models based on clustering methodologies. Renewable Energy, 147, 1554–1564.

    Google Scholar 

  94. McCandless, T. C., Dettling, S., & Haupt, S. E. (2020). Comparison of implicit vs. explicit regime identification in machine learning methods for solar irradiance prediction. Energies, 13, 689.

    Article  Google Scholar 

  95. Sun, S., Wang, S., Zhang, G., & Zheng, J. (2018). A decomposition-clustering-ensemble learning approach for solar radiation forecasting. Solar Energy, 163, 189–199.

    Article  Google Scholar 

  96. Wang, Y., Shen, Y., Mao, S., Chen, X., & Zou, H. (2018). LASSO & LSTM integrated temporal model for short-term solar intensity forecasting. IEEE Internet of Things Journal, 6, 2933–2944.

    Article  Google Scholar 

  97. Fatih Onur, H., & Serttas, F. (2016). A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting. Renewable Energy, 108, 635–643.

    Google Scholar 

  98. Wu, C., Wang, J., Chen, X., Du, P., & Yang, W. (2019). A novel hybrid system based on multi-objective optimization for wind speed forecasting. Renewable Energy, 146, 149–165.

    Article  Google Scholar 

  99. Feng, Y., Hao, W., Li, H., Cui, N., Gong, D., & Gao, L. (2020). Machine learning models to quantify and map daily global solar radiation and photovoltaic power. Renewable and Sustainable Energy Reviews, 118, 109393.

    Article  Google Scholar 

  100. Galván, I. M., Valls, J. M., Cervantes, A., & Aler, R. (2017). Multi-objective evolutionary optimization of prediction intervals for solar energy forecasting with neural networks. Information Sciences, 418, 363–382.

    Article  Google Scholar 

  101. Demircan, C., Bayrakçı, H. C., & Keçeba¸s, A. (2020). Machine learning-based improvement of empiric models for an accurate estimating process of global solar radiation. Sustainable Energy Technologies and Assessments, 37, 100574.

    Article  Google Scholar 

  102. Papari, B., Edrington, C. S., & Kavousi-Fard, F. (2017). An effective fuzzy feature selection and prediction method for modeling tidal current: A case of Persian gulf. IEEE Transactions on Geoscience and Remote Sensing, 55, 4956–4961.

    Article  Google Scholar 

  103. Lewis, C. D. (1982). Industrial and business forecasting methods. Butterworth Scientific.

    Google Scholar 

  104. Leholo, S.; Owolawi, P.; Akindeji, K. Solar energy potential forecasting and optimization using artificial neural network- South Africa case study. In Proceedings of the Amity International Conference on Artificial Intelligence, Dubai, UAE, 4–6 February 2019.

    Google Scholar 

  105. Bouzgou, H., & Gueymard, C. A. (2019). Fast short-term global solar irradiance forecasting with wrapper mutual information. Renewable Energy, 133, 1055–1065.

    Article  Google Scholar 

  106. Wang, Z.; Koprinska, Z.W.I.; Koprinska, I.; Troncoso, A.; Martínez-Álvarez, F. Static and dynamic ensembles of neural networks for solar power forecasting. In Proceedings of the international joint conference on neural networks (IJCNN), IEEE, Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.

    Google Scholar 

  107. Yousif, J. H., Kazem, H. A., Alattar, N. N., & Elhassan, I. I. (2019). A comparison study based on artificial neural network for assessing PV/T solar energy production. Case Studies in Thermal Engineering, 13, 1–13.

    Google Scholar 

  108. Sapitang, M., Ridwan, W. M., Kushiar, K. F., Ahmed, A. N., & El-Shafie, A. (2020). Machine learning application in reservoir water level forecasting for sustainable hydropower generation strategy. Sustainability, 12, 6121.

    Article  Google Scholar 

  109. Zhou, J., Sun, N., Jia, B., & Peng, T. (2018). A novel decomposition-optimization model for short-term wind speed forecasting. Energies, 11, 1752.

    Article  Google Scholar 

  110. Luo, X., Sun, J., Wang, L., Wang, W., Zhao, W., Wu, J., Wang, J. H., & Zhang, Z. (2018). Short-term wind speed forecasting via stacked extreme learning machine with generalized correntropy. IEEE Transactions on Industrial Informatics, 14, 4963–4971.

    Article  Google Scholar 

  111. Liu, H., Mi, X., & Li, Y. (2018). Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM. Energy Conversion and Management, 159, 54–64.

    Article  Google Scholar 

  112. Liu, H., Mi, X. W., & Li, Y. F. (2018). Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network. Energy Conversion and Management, 156, 498–514.

    Article  Google Scholar 

  113. Zhang, X., Peng, Y., Xu, W., & Wang, B. (2017). An optimal operation model for hydropower stations considering inflow forecasts with different Lead-times. Water Resources Management, 33, 173–188.

    Article  Google Scholar 

  114. Nieto, P. G., Garcia-Gonzalo, E., Paredes-Sánchez, J. P., Sánchez, A. B., & Fernández, M. M. (2019). Predictive modeling of the higher heating value in biomass torrefaction for the energy treatment process using machine-learning techniques. Neural Computing and Applications, 31, 8823–8836.

    Article  MATH  Google Scholar 

  115. Avila, D., Marichal, G. N., Padrón, I., Quiza, R., & Hernández, Á. (2020). Forecasting of wave energy in Canary Islands based on Artifcial intelligence. Applied Ocean Research, 101, 102189.

    Article  Google Scholar 

  116. Shi, S., Patton, R. J., & Liu, Y. (2018). Short-term wave forecasting using gaussian process for optimal control of wave energy converters. IFAC PapersOnLine, 51, 44–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Gupta, K., Saroha, S. (2022). A Review of Machine Learning Models in Renewable Energy. In: Rodrigues, J.J.P.C., Agarwal, P., Khanna, K. (eds) IoT for Sustainable Smart Cities and Society. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-89554-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89554-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89553-2

  • Online ISBN: 978-3-030-89554-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics