Skip to main content

Surface Finishing Post-treatments for Additive Manufactured Metallic Components

  • Chapter
  • First Online:
Innovations in Additive Manufacturing

Abstract

One of the major limitations of components built by selective laser melting (SLM) and electron beam melting (EBM) is their higher surface roughness. Adherence of the partially melted particles, balling effect and stair case effect are the major reasons for the higher surface roughness. Down-skin surfaces have a higher surface roughness than up-skin surfaces. A higher surface roughness of the as-built additive manufactured (AM) parts could deleteriously influence the mechanical properties, fatigue strength and corrosion resistance. The higher surface roughness of the AM parts restricts their use for the intended purpose and warrants suitable surface finishing post-treatments. This chapter aims to provide an outline of the ability of various surface finishing post-treatments to improve the surface finish of AM parts. The principle and mechanism of the treatment method, the beneficial effects induced by the treatment and the major limitations are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amanov, A.: Effect of local treatment temperature of ultrasonic nanocrystalline surface modification on tribological behavior and corrosion resistance of stainless steel 316L produced by selective laser melting. Surf. Coat. Technol. 398, 126080 (2020a)

    Google Scholar 

  2. Amanov, A.: A promising post-additive manufacturing surface modification for tailoring gradient nanostructure and harmonic structure in Co-Cr-Mo alloy. Vacuum 182, 109702 (2020b)

    Google Scholar 

  3. Atzeni, E., Barletta, M., Calignano, F., Iuliano, L., Rubino, G., Tagliaferri, V.: Abrasive fluidized bed (AFB) finishing of AlSi10Mg substrates manufactured by direct metal laser sintering (DMLS). Addit. Manuf. 10, 15–23 (2016)

    Google Scholar 

  4. Bagherifard, S.: Enhancing the structural performance of lightweight metals by shot peening. Adv. Eng. Mater. 21, 1801140 (2019)

    Google Scholar 

  5. Baicheng, Z., Xiaohua, L., Jiaming, B., Junfeng, G., Pan, W., Chen-nan, S., Muiling. N., Guojun, Q., Jun, W.: Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Mater. Des. 116, 531–537 (2017)

    Google Scholar 

  6. Balusamy, T., Kumar, S., Sankara Narayanan, T.S.N.: Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel. Corros. Sci. 52(11), 3826–3834 (2010)

    Google Scholar 

  7. Balusamy, T., Sankara Narayanan, T.S.N. and Park, H.Y.: Surface Nanostructuring of Metallic Materials for Implant Applications. In: Santra, T.S. Mohan, L. (Eds.) Nanomaterials and Their Biomedical Applications, pp. 465–511. Springer, Singapore (2021)

    Google Scholar 

  8. Bayati, P., Safaei, K., Nematollahi, M., Jahadakbar, A., Yadollahi, A., Mahtabi, M., Elahinia, M.: Toward understanding the effect of remelting on the additively manufactured NiTi. Int. J. Adv. Manuf. Technol. 112, 347–360 (2021)

    Google Scholar 

  9. Boschetto, A., Bottini, L., Macera, L., Veniali, F.: Post-processing of complex SLM parts by Barrel Finishing. Appl. Sci. 10, 1382 (2020)

    Google Scholar 

  10. Bouland, C., Urlea, V., Beaubier, K., Samoilenko, M., Brailovski, V.: Abrasive flow machining of laser powder bed-fused parts: Numerical modeling and experimental validation. J. Mater. Process. Technol. 273, 116262 (2019)

    Google Scholar 

  11. Brodie, E.G., Richter, J., Wegener, T., Niendorf, T., Molotnikov, A.: Low-cycle fatigue performance of remelted laser powder bed fusion (L-PBF) biomedical Ti25Ta. Mater. Sci. Eng. A 798, 140228 (2020)

    Google Scholar 

  12. Chen, Z., Wu, X., Tomus, D., Davies, C.H.J.: Surface roughness of selective laser melted Ti-6Al-4V alloy components. Addit. Manuf. 21, 91–103 (2018)

    Google Scholar 

  13. Chen, L., Richter, B., Zhang, X., Ren, X., Pfefferkorn, F.E.: Modification of surface characteristics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing. Addit. Manuf. 32, 101013 (2020)

    Google Scholar 

  14. Chen, L., Richter, B., Zhang, X., Bertsch, K.B., Thoma, D.J., Pfefferkorn, F.E.: Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion. Mater. Sci. Eng. A 802, 140579 (2021)

    Google Scholar 

  15. Cheng, H., Xu, B., Xie, D., Yang, Y., Shen, L., Qiu, M., Chen, Y., Lou, G., Zhao, J., Tian, Z.: Improvement of selective laser melting substrate surface performance via combined processing of jet electrochemical machining and jet electrodeposition. Surf. Coat. Technol. 412, 127028 (2021)

    Google Scholar 

  16. Chi, J., Cai, Z., Zhang, H., Zhang, H., Guo, W., Wan, Z., Han, G., Peng, P., Zeng, Z.: Combining manufacturing of titanium alloy through direct energy deposition and laser shock peening processes. Mater. Des. 203, 109626 (2021)

    Google Scholar 

  17. Childerhouse, T., Hernandez-Nava, E., M’Saoubi, R., Tapoglou, N., Jackson, M.: Surface and sub-surface integrity of Ti-6Al-4V components produced by selective electron beam melting with post-build finish machining. Procedia CIRP 87, 309–314 (2020)

    Google Scholar 

  18. Damon, J., Dietrich, S., Vollert, F., Gibmeier, J., Schulze, V.: Process dependent porosity and the influence of shot peening on porosity morphology regarding selective laser melted AlSi10Mg parts. Addit. Manuf. 20, 77–89 (2018)

    Google Scholar 

  19. de Formanoir, C., Suard, M., Dendievel, R., Martin, G., Godet, S.: Improving the mechanical efficiency of electron beam melted titanium lattice structures by chemical etching. Addit. Manuf. 11, 71–76 (2016)

    Google Scholar 

  20. Denti, L., Bassoli, E., Gatto, A., Santecchia, E., Mengucci, P.: Fatigue life and microstructure of additive manufactured Ti6Al4V after different finishing processes. Mater. Sci. Eng. A. 755, 1–9 (2019)

    Google Scholar 

  21. El Hassanin, A., Troiano, M., Scherillo, F., Silvestri, A.T., Contaldi, V., Solimene, R., Scala, F., Squillace, A., Salatino, P.: Rotation-assisted abrasive fluidised bed machining of AlSi10Mg parts made through selective laser melting technology. Procedia Manuf. 47, 1043–1049 (2020)

    Google Scholar 

  22. Eyzat, Y., Chemkhi, M., Portella, Q., Gardan, J., Remond, J., Retraint, D.: Characterization and mechanical properties of as-built SLM Ti-6Al-4V subjected to surface mechanical post-treatment. Procedia CIRP 81, 1225–1229 (2019)

    Google Scholar 

  23. García-Blanco, M.B., Díaz-Fuentes, M., Espinosa, E., Mancisidor, A.M., Vara, G.: Comparative study of different surface treatments applied to Ti6Al4V parts produced by Selective Laser Melting. Trans. Inst. Met. Finish. (2021). https://doi.org/10.1080/00202967.2021.1898171

    Article  Google Scholar 

  24. Guo, J., Goh, M.H., Wang, P., Huang, R., Lee, X., Wang, B., Nai, S.M.L., Wei, J.: Investigation on surface integrity of electron beam melted Ti-6Al-4V by precision grinding and electropolishing. Chinese J. Aeronaut. Available online 2 Sept 2020. https://doi.org/10.1016/j.cja.2020.08.014

  25. Guo, W., Sun, R., Song, B., Zhu, Y., Li, F., Che, Z., Li, B., Peng, P.: Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy. Surf. Coat. Technol. 349, 503–510 (2018)

    Google Scholar 

  26. Hackel, L., Rankin, J.R., Rubenchik, A., King, W.E., Matthews, M.: Laser peening: A tool for additive manufacturing post-processing. Addit. Manuf. 24, 67–75 (2018)

    Google Scholar 

  27. Han, S., Salvatore, F., Rech, J., Bajolet, J., Courbon, J.: Effect of abrasive flow machining (AFM) finish of selective laser melting (SLM) internal channels on fatigue performance. J. Manuf. Process. 59, 248–257 (2020)

    Google Scholar 

  28. Hofele, M., Schanz, J., Roth, A., Harrison, D.K., De Silva, A.K.M., Riegel, H.: Process parameter dependencies of continuous and pulsed laser modes on surface polishing of additive manufactured aluminium AlSi10Mg parts. Mater. Sci. Eng. Technol. (Materialwiss. Werkstofftech) 52(4), 409–432 (2021)

    Google Scholar 

  29. Hu, Z., Nagarajan, B., Song, X., Huang, R., Zhai, W., Wei, J.: Tailoring surface roughness of micro selective laser melted SS316L by In-Situ Laser Remelting. In: Itoh, S., Shukla, S. (eds.) INCASE 2019, LNME, pp. 337–343, Springer, Singapore Pte Ltd. (2020)

    Google Scholar 

  30. Jamshidi, P., Aristizabal, M., Kong, W., Villapun, V., Cox, S.C., Grover, L.M., Attallah, M.M.: Selective laser melting of Ti-6Al-4V: The impact of post-processing on the Tensile, Fatigue and biological properties for medical implant applications. Materials 13(12), 2813 (2020)

    Google Scholar 

  31. Jin, X., Lan, L., Gao, S., He, B., Rong, Y.: Effects of laser shock peening on microstructure and fatigue behavior of Ti-6Al-4V alloy fabricated via electron beam melting. Mater. Sci. Eng. A. 780, 139199 (2020)

    Google Scholar 

  32. Jung, J.-H., Park, H.-K., Lee, B.S., Choi, J., Seo, B., Kim, H.K., Kim, H.G., Kim, H.G.: Study on surface shape control of pure Ti fabricated by electron beam melting using electrolytic polishing. Surf. Coat. Technol. 324, 106–110 (2017)

    Google Scholar 

  33. Kahlin, M., Ansell, H., Kerwin, A., Smith, B., Moverare, J.: Variable amplitude loading of additively manufactured Ti6Al4V subjected to surface post processes. Int. J. Fatigue 142, 105945 (2021)

    Google Scholar 

  34. Karakurt, I., Ho, K.Y., Ledford, C., Gamzina, D., Horn, T., Luhmann, N.C., Lin, L.: Development of a magnetically driven abrasive polishing process for additively manufactured copper structures. Procedia Manuf. 26, 798–805 (2018)

    Google Scholar 

  35. Kalentics, N., Boillat, E., Peyre, P., Gorny, C., Kenel, C., Leinenbach, C., Jhabval, J., Logé, R.E.: 3D Laser shock peening—A new method for the 3D control of residual stresses in Selective Laser Melting. Mater. Des. 130, 350–356 (2017)

    Google Scholar 

  36. Karimi, J., Suryanarayana, C., Okulov, I., Prashanth, K.G.: Selective laser melting of Ti6Al4V: Effect of laser re-melting. Mater. Sci. Eng. A 805, 140558 (2020)

    Google Scholar 

  37. Kaynak, Y., Kitay, O.: Porosity, surface quality, microhardness and microstructure of selective laser melted 316L stainless steel resulting from finish machining. J. Manuf. Mater. Process. 2(2), 36 (2018)

    Google Scholar 

  38. Kaynak, Y., Kitay, O.: The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting. Addit. Manuf. 26, 84–93 (2019)

    Google Scholar 

  39. Kaynak, Y., Tascioglu, E.: Post-processing effects on the surface characteristics of Inconel 718 alloy fabricated by selective laser melting additive manufacturing. Prog. Addit. Manuf. 5, 221–234 (2020)

    Google Scholar 

  40. Khan, H.M., Karabulut, Y., Kitay, O., Kaynak, Y., Jawahir, I.S.: Influence of the post-processing operations on surface integrity of metal components produced by laser powder bed fusion additive manufacturing: A review. Mach. Sci. Technol. 25(1), 118–176 (2021)

    Google Scholar 

  41. Lee, J.-Y., Nagalingam, A.P., Yeo, S.H.: A review on the state-of-the-art of surface finishing processes and related ISO/ASTM standards for metal additive manufactured components. Virtual Phys. Prototyp. 16(1), 68–96 (2021)

    Google Scholar 

  42. Lee, S., Ahmadi, Z., Pegues, J.W., Mahjouri-Samani, M., Shamsaei, N.: Laser polishing for improving fatigue performance of additive manufactured Ti-6Al-4V parts, Opt. Laser Technol. 134, 106639 (2021b)

    Google Scholar 

  43. Liu, S., Shin, Y.C.: Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 164, 107552 (2019)

    Google Scholar 

  44. Lu, J., Lu, H., Xu, X., Yao, J., Cai, J., Luo, K.: High-performance integrated additive manufacturing with laser shock peening induced microstructural evolution and improvement in mechanical properties of Ti6Al4V alloy components. Int. J. Mach. Tools Manuf. 148, 103475 (2019)

    Google Scholar 

  45. Lv, F., Liang, H., Xie, D., Mao, Y., Wang, C., Shen, L., Tian, Z.: On the role of laser in situ re-melting into pore elimination of Ti6Al4V components fabricated by selective laser melting. J. Alloys Compd. 854, 156866 (2021)

    Google Scholar 

  46. Łyczkowska, E., Szymczyk, P., Dybała, B., Chlebus, E.: Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing. Arch. Civ. Mech. Eng. 14, 586–594 (2014)

    Google Scholar 

  47. Ma, C., Andani, M.T., Qin, H., Moghaddam, N.S., Ibrahim, H., Jahadakbar, A., Amerinatanzi, A., Ren, Z., Zhang, H., Doll, G.L., Dong, Y., Elahinia, M., Ye, C.: Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification. J. Mater. Process. Technol. 249, 433–440 (2017)

    Google Scholar 

  48. Maleki, E., Bagherifard, S., Bandini, M., Guagliano, M.: Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities. Addit. Manuf. 37, 101619 (2021)

    Google Scholar 

  49. Marimuthu, S., Triantaphyllou, A., Antar, M., Wimpenny, D., Morton, H., Beard, M.: Laser polishing of selective laser melted components. Int. J. Mach. Tools Manuf. 95, 97–104 (2015)

    Google Scholar 

  50. Maamoun, A., Elbestawi, M., Veldhuis, S.: Influence of shot peening on AlSi10Mg parts fabricated by additive manufacturing. J. Manuf. Mater. Process. 2(3), 40 (2018)

    Google Scholar 

  51. Mohammadian, N., Turenne, S., Brailovski, V.: Surface finish control of additively-manufactured Inconel 625 components using combined chemical-abrasive flow polishing. J. Mater. Process. Technol. 252, 728–738 (2018)

    Google Scholar 

  52. Nagalingam, A.P., Yeo, S.H.: Surface finishing of additively manufactured Inconel 625 complex internal channels: A case study using a multi-jet hydrodynamic approach. Addit. Manuf. 36, 101428 (2020)

    Google Scholar 

  53. Nagalingam, A.P., Yuvaraj, H.K., Yeo, S.H.: Synergistic effects in hydrodynamic cavitation abrasive finishing for internal surface-finish enhancement of additive-manufactured components. Addit. Manuf. 33, 101110 (2020)

    Google Scholar 

  54. Nesli, S., Yilmaz, O.: Surface characteristics of laser polished Ti-6Al-4V parts produced by electron beam melting additive manufacturing process. Int. J. Adv. Manuf. Technol. 114, 271–289 (2021)

    Google Scholar 

  55. Peng, C., Fu, Y., Wei, H., Li, S., Wang, X., Gao, H.: Study on improvement of surface roughness and induced residual stress for additively manufactured metal parts by abrasive flow machining. Procedia CIRP 71, 386–389 (2018)

    Google Scholar 

  56. Peng, X., Kong, L., Fuh, J.Y.H., Wang, H.: A review of post-processing technologies in additive manufacturing. J. Manuf. Mater. Process. 5(2), 38 (2021)

    Google Scholar 

  57. Pyka, G., Burakowski, A., Kerckhofs, G., Moesen, M., Van Bael, S., Schrooten, J., Wevers, M.: Surface modification of Ti6Al4V open porous structures produced by additive manufacturing. Adv. Eng. Mater. 14(6), 363–370 (2012)

    Google Scholar 

  58. Rotty, C., Doche, M.-L., Mandroyan, A., Hihn, J.-Y., Montavon, G., Moutarlier, V.: Comparison of electropolishing behaviours of TSC, ALM and cast 316L stainless steel in H3PO4/H2SO4. Surf. Interfaces 6, 170–176 (2017)

    Google Scholar 

  59. Sankara Narayanan, T.S.N., Kim, J., Jeong, H.E., Park, H.W.: Enhancement of the surface properties of selective laser melted maraging steel by large pulsed electron-beam irradiation. Addit. Manuf. 33, 101125 (2020)

    Google Scholar 

  60. Sato, M., Takakuwa, O., Nakai, M., Niinomi, M., Takeo, F., Soyama, H.: Using cavitation peening to improve the fatigue life of titanium alloy Ti-6Al-4V manufactured by electron beam melting. Mater. Sci. Appl. 7, 181–191 (2016)

    Google Scholar 

  61. Seo, B., Park, H.-K., Kim, H. G., Kim, W. R., Park, K.: Corrosion behavior of additive manufactured CoCr parts polished with plasma electrolytic polishing. Surf. Coat. Technol. 406, 126640 (2021)

    Google Scholar 

  62. Shinonaga, T., Yamaguchi, A., Okamoto, Y., Okada(1), A.: Surface smoothing and repairing of additively manufactured metal products by large-area electron beam irradiation, CIRP Annals, IN Press, Available online 13 May 2021 (2021). https://doi.org/10.1016/j.cirp.2021.04.063

  63. Soyama, H., Takeo, F.: Effect of various peening methods on the fatigue properties of titanium alloy Ti6Al4V manufactured by direct metal laser sintering and electron beam melting. Materials 13, 2216 (2020)

    Google Scholar 

  64. Sun, Y., Bailey, R., Moroz, A.: Surface finish and properties enhancement of selective laser melted 316L stainless steel by surface mechanical attrition treatment. Surf. Coat. Technol. 378, 124993 (2019)

    Google Scholar 

  65. Tan, K.L., Yeo, S.H.: Surface modification of additive manufactured components by ultrasonic cavitation abrasive finishing. Wear 378–379, 90–95 (2017)

    Google Scholar 

  66. Tan, K.L., Yeo, S.H.: Surface finishing on IN625 additively manufactured surfaces by combined ultrasonic cavitation and abrasion. Addit. Manuf. 31, 100938 (2020)

    Google Scholar 

  67. Teng, X., Zhang, G., Zhao, Y., Cui, Y., Li, L., Jiang, L.: Study on magnetic abrasive finishing of AlSi10Mg alloy prepared by selective laser melting. Int. J. Adv. Manuf. Technol. 105, 2513–2521 (2019)

    Google Scholar 

  68. Tian, Y., Gora, W.S., Cabo, A.P., Parimi, L.L., Hand, D.P., Tammas-Williams, S., Prangnell, P.B.: Material interactions in laser polishing powder bed additive manufactured Ti6Al4V components. Addit. Manuf. 20, 11–22 (2018)

    Google Scholar 

  69. Tong, Z., Liu, H., Jiao, J., Zhou, W., Yang, Y., Ren, X.: Improving the strength and ductility of laser directed energy deposited CrMnFeCoNi high-entropy alloy by laser shock peening. Addit. Manuf. 35, 101417 (2020)

    Google Scholar 

  70. Tyagi, P., Goulet, T., Riso, C., Stephenson, R., Chuenprateep, N., Schlitzer, J., Benton, C., Garcia-Moreno, F.: Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing. Addit. Manuf. 25, 32–38 (2019)

    Google Scholar 

  71. Urlea, V., Brailovski, V.: Electropolishing and electropolishing-related allowances for powder bed selectively laser-melted Ti-6Al-4V alloy components. J. Mater. Process. Technol. 242, 1–11 (2017)

    Google Scholar 

  72. Vaithilingam, J., Goodridge, R.D., Hague, R.J.M., Christie, S.D.R., Edmondson, S.: The effect of laser remelting on the surface chemistry of Ti6al4V components fabricated by selective laser melting. J. Mater. Process. Technol. 232, 1–8 (2016)

    Google Scholar 

  73. van Hooreweder, B., Lietaert, K., Neirinck, B., Lippiatt, N., Wevers, M.: CoCr F75 scaffolds produced by additive manufacturing: influence of chemical etching on powder removal and mechanical performance. J. Mech. Behav. Biomed. Mater. 70, 60–67 (2017)

    Google Scholar 

  74. Wu, Y.-C., Kuo, C.-N., Chung, Y.-C., Ng, C.-H., Huang, J.C.: Effects of electropolishing on mechanical properties and bio-corrosion of Ti6Al4V fabricated by electron beam melting additive manufacturing. Materials 12(9), 1466 (2019)

    Google Scholar 

  75. Wysocki, B., Idaszek, J., Buhagiar, J., Szlązak, K., Brynk, T., Kurzydłowski, K.J., Święszkowski, W.: The influence of chemical polishing of titanium scaffolds on their mechanical strength and in-vitro cell response. Mater. Sci. Eng. C. 95, 428–439 (2019)

    Google Scholar 

  76. Yasa, E., Deckers, J., Kruth, J.: The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp. J. 17(5), 312–327 (2011)

    Google Scholar 

  77. Yeo, I., Bae, S., Amanov, A., Jeong, S.: Effect of laser shock peening on properties of heat-treated Ti-6Al-4V manufactured by laser powder bed fusion. Int. J. Precis. Eng. Manuf.-Green Tech. (2020). https://doi.org/10.1007/s40684-020-00234-2

  78. Zhang, J.: Micro-blasting of 316L tubular lattice manufactured by laser powder bed fusion. In: Proceedings of the 19th International Conference of the European Society For Precision Engineering and Nanotechnology EUSPEN 2019, Bilbao, Spain, 3–7 June 2019

    Google Scholar 

  79. Zhang, H., Chiang, R., Qin, H., Ren, Z., Hou, X., Lin, D., Doll, G.L., Vasudevan, V.K., Dong, Y., Ye, C.: The effects of ultrasonic nanocrystal surface modification on the fatigue performance of 3D-printed Ti64. Int. J. Fatigue 103, 136–146 (2017)

    Google Scholar 

  80. Zhang, H., Zhao, J., Liu, J., Qin, H., Ren, Z., Doll, G.L., Dong, Y., Ye, C.: The effects of electrically-assisted ultrasonic nanocrystal surface modification on 3D-printed Ti-6Al-4V alloy. Addit. Manuf. 22, 60–68 (2018)

    Google Scholar 

  81. Zhang, J., Chaudhari, A., Wang, H.: Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316L stainless steel. J. Manuf. Process. 45, 710–719 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sankara Narayanan, T.S.N., Park, H.W. (2022). Surface Finishing Post-treatments for Additive Manufactured Metallic Components. In: Khan, M.A., Jappes, J.T.W. (eds) Innovations in Additive Manufacturing. Springer Tracts in Additive Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-89401-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89401-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89400-9

  • Online ISBN: 978-3-030-89401-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics