Skip to main content

A Symbolic Machine Learning Approach for Cybersickness Potential-Cause Estimation

  • Conference paper
  • First Online:
Entertainment Computing – ICEC 2021 (ICEC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13056))

Included in the following conference series:

Abstract

Virtual reality (VR) and head-mounted displays are constantly gaining popularity in various fields such as education, military, entertainment, and bio/medical informatics. Although such technologies provide a high sense of immersion, they can also trigger symptoms of discomfort. This condition is called cybersickness (CS) and is quite popular in recent publications in the virtual reality context. This work proposes a novel experimental analysis using symbolic machine learning that ranks potential causes for CS. We estimate the CS causes and rank them according to their impact on the classification capabilities of CS. The experiments are performed using two distinct virtual reality games. We were able to identify that acceleration triggered cybersickness more frequently in a race game in contrast to a flight game. Furthermore, participants less experienced with VR are more prone to feel discomfort and this variable has a greater impact in the race game in contrast to the flight game, where the acceleration is not controlled by the user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernardini, F., Monard, M.C., Prati, R.: Constructing ensembles of symbolic classifiers. Int. J. Hybrid Intell. Syst. 3(3), 159–167 (2006)

    Google Scholar 

  2. Bles, W., Bos, J.E., De Graaf, B., Groen, E., Wertheim, A.H.: Motion sickness: only one provocative conflict? Brain Res. Bull. 47(5), 481–487 (1998)

    Article  Google Scholar 

  3. Bos, J.E., Bles, W., Groen, E.L.: A theory on visually induced motion sickness. Displays 29(2), 47–57 (2008)

    Article  Google Scholar 

  4. Bouyer, G., Chellali, A., Lécuyer, A.: Inducing self-motion sensations in driving simulators using force-feedback and haptic motion. In: Virtual Reality (VR), pp. 84–90. IEEE (2017)

    Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  6. Budhiraja, P., Miller, M.R., Modi, A.K., Forsyth, D.: Rotation blurring: use of artificial blurring to reduce cybersickness in virtual reality first person shooters. arXiv preprint arXiv:1710.02599 (2017)

  7. Calvelo, M., Piñeiro, Á., Garcia-Fandino, R.: An immersive journey to the molecular structure of SARS-CoV-2: virtual reality in Covid-19. Comput. Struct. Biotechnol. J. 18, 2621–2628 (2020)

    Article  Google Scholar 

  8. Creighton, R.H.: Unity 3D Game Development by Example: A Seat-of-Your-Pants Manual for Building Fun, Groovy Little Games Quickly. Packt Publishing Ltd., New York (2010)

    Google Scholar 

  9. Dennison, M.S., D’Zmura, M.: Cybersickness without the wobble: experimental results speak against postural instability theory. Appl. Ergon. 58, 215–223 (2017)

    Article  Google Scholar 

  10. Flach, P.: Machine Learning: The Art and Science of Algorithms That Make Sense of Data. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  11. Frank, E., Hall, M.A., Witten, I.H.: Data Mining: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  12. Garcia-Agundez, A., et al.: Development of a classifier to determine factors causing cybersickness in virtual reality environments. Games Health J. 8(6), 439–444 (2019)

    Article  Google Scholar 

  13. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649. IEEE (2013)

    Google Scholar 

  14. Huang, J., Ling, C.X.: Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17(3), 299–310 (2005)

    Article  Google Scholar 

  15. Jeong, D., Yoo, S., Yun, J.: Cybersickness analysis with EEG using deep learning algorithms. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 827–835. IEEE (2019)

    Google Scholar 

  16. Jin, W., Fan, J., Gromala, D., Pasquier, P.: Automatic prediction of cybersickness for virtual reality games. In: 2018 IEEE Games, Entertainment, Media Conference (GEM), pp. 1–9. IEEE (2018)

    Google Scholar 

  17. Getting Rid of Cybersickness. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59342-1_6

  18. Kim, H.K., Park, J., Choi, Y., Choe, M.: Virtual reality sickness questionnaire (VRSQ): motion sickness measurement index in a virtual reality environment. Appl. Ergon. 69, 66–73 (2018)

    Article  Google Scholar 

  19. Kim, J., Kim, W., Oh, H., Lee, S., Lee, S.: A deep cybersickness predictor based on brain signal analysis for virtual reality contents. In: Proceedings of IEEE International Conference on Computer Vision, pp. 10580–10589 (2019)

    Google Scholar 

  20. Kolasinski, E.M.: Simulator sickness in virtual environments. Technical report, DTIC Document (1995)

    Google Scholar 

  21. Kühnapfel, U., Cakmak, H.K., Maaß, H.: Endoscopic surgery training using virtual reality and deformable tissue simulation. Comput. Graph. 24(5), 671–682 (2000)

    Article  Google Scholar 

  22. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

    Article  Google Scholar 

  23. Maree, C., Omlin, C.W.: Towards responsible AI for financial transactions. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 16–21. IEEE (2020)

    Google Scholar 

  24. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  25. Porcino, T.: Cybersickness Dataset. https://github.com/tmp1986/UFFCSData. Accessed 7 July 2021

  26. Porcino, T., Rodrigues, E.O., Silva, A., Clua, E., Trevisan, D.: Using the gameplay and user data to predict and identify causes of cybersickness manifestation in virtual reality games. In: 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH), pp. 1–8. IEEE (2020)

    Google Scholar 

  27. Porcino, T., Trevisan, D., Clua, E.: Minimizing cybersickness in head-mounted display systems: causes and strategies review. In: 2020 22nd Symposium on Virtual and Augmented Reality (SVR), pp. 154–163. IEEE (2020)

    Google Scholar 

  28. Rebenitsch, L., Owen, C.: Review on cybersickness in applications and visual displays. Virtual Reality 20(2), 101–125 (2016). https://doi.org/10.1007/s10055-016-0285-9

    Article  Google Scholar 

  29. Rebenitsch, L.R.: Cybersickness Prioritization and Modeling. Michigan State University (2015)

    Google Scholar 

  30. Rodrigues, E.O., Conci, A., Liatsis, P.: Morphological classifiers. Pattern Recogn. 84, 82–96 (2018)

    Article  Google Scholar 

  31. Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling (2014)

    Google Scholar 

  32. Statista, A.: The statistics portal (2020). https://www.statista.com/statistics/591181/global-augmented-virtual-reality-market-size/

  33. Van Waveren, J.: The asynchronous time warp for virtual reality on consumer hardware. In: Proceedings of 22nd ACM Conference on Virtual Reality Software and Technology, pp. 37–46 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Porcino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Porcino, T., Rodrigues, E.O., Bernardini, F., Trevisan, D., Clua, E. (2021). A Symbolic Machine Learning Approach for Cybersickness Potential-Cause Estimation. In: Baalsrud Hauge, J., C. S. Cardoso, J., Roque, L., Gonzalez-Calero, P.A. (eds) Entertainment Computing – ICEC 2021. ICEC 2021. Lecture Notes in Computer Science(), vol 13056. Springer, Cham. https://doi.org/10.1007/978-3-030-89394-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89394-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89393-4

  • Online ISBN: 978-3-030-89394-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics