Skip to main content

Population Protocols with Unreliable Communication

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2021)

Abstract

Population protocols are a model of distributed computation intended for the study of networks of independent computing agents with dynamic communication structure. Each agent has a finite number of states, and communication occurs nondeterministically, allowing the involved agents to change their states based on each other’s states.

In the present paper we study unreliable models based on population protocols and their variations from the point of view of expressive power. We model the effects of message loss. We show that for a general definition of protocols with unreliable communication with constant-storage agents such protocols can only compute predicates computable by immediate observation (IO) population protocols (sometimes also called one-way protocols). Immediate observation population protocols are inherently tolerant to unreliable communication and keep their expressive power under a wide range of fairness conditions. We also prove that a large class of message-based models that are generally more expressive than IO becomes strictly less expressive than IO in the unreliable case.

The project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 787367 (PaVeS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: ACM Symposium on Principles of Distributed Computing, pp. 290–299. ACM (2004)

    Google Scholar 

  2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006). https://doi.org/10.1007/s00446-005-0138-3

    Article  MATH  Google Scholar 

  3. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer, Heidelberg (2006). https://doi.org/10.1007/11864219_5

    Chapter  Google Scholar 

  4. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 20–32. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75142-7_5

    Chapter  Google Scholar 

  5. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distrib. Comput. 20(4), 279–304 (2007). https://doi.org/10.1007/s00446-007-0040-2

    Article  MATH  Google Scholar 

  6. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. ACM Trans. Auton. Adapt. Syst. 3(4), 13:1–13:28 (2008)

    Google Scholar 

  7. Apt, K.R., Francez, N., Katz, S.: Appraising fairness in languages for distributed programming. Distrib. Comput. 2(4), 226–241 (1988). https://doi.org/10.1007/BF01872848

    Article  MATH  Google Scholar 

  8. Bertrand, N., Bouyer, P., Majumdar, A.: Reconfiguration and message losses in parameterized broadcast networks. In: 30th International Conference on Concurrency Theory, CONCUR 2019, August 27–30, 2019, Amsterdam, the Netherlands. LIPIcs, vol. 140, pp. 32:1–32:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  9. Blondin, M., Esparza, J., Jaax, S.: Expressive power of oblivious consensus protocols (2019). arXiv:1902.01668

  10. Chatzigiannakis, I., Dolev, S., Fekete, S.P., Michail, O., Spirakis, P.G.: Not all fair probabilistic schedulers are equivalent. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 33–47. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10877-8_5

    Chapter  Google Scholar 

  11. Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Passively mobile communicating logarithmic space machines. Technical report (2010)

    Google Scholar 

  12. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When birds die: making population protocols fault-tolerant. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 51–66. Springer, Heidelberg (2006). https://doi.org/10.1007/11776178_4

    Chapter  Google Scholar 

  13. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: Secretive birds: privacy in population protocols. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 329–342. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77096-1_24

    Chapter  Google Scholar 

  14. Di Luna, G.A., Flocchini, P., Izumi, T., Izumi, T., Santoro, N., Viglietta, G.: On the power of weaker pairwise interaction: fault-tolerant simulation of population protocols. Theoret. Comput. Sci. 754, 35–49 (2019)

    Article  MathSciNet  Google Scholar 

  15. Di Luna, G.A., Flocchini, P., Izumi, T., Izumi, T., Santoro, N., Viglietta, G.: Population protocols with faulty interactions: the impact of a leader. Theor. Comput. Sci. 754, 35–49 (2019)

    Article  MathSciNet  Google Scholar 

  16. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  Google Scholar 

  17. Doty, D., Soloveichik, D.: Stable leader election in population protocols requires linear time. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 602–616. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5_40

    Chapter  Google Scholar 

  18. Emerson, E.A., Namjoshi, K.S.: On model checking for non-deterministic infinite-state systems. In: LICS, pp. 70–80. IEEE Computer Society (1998)

    Google Scholar 

  19. Esparza, J., Ganty, P., Majumdar, R., Weil-Kennedy, C.: Verification of immediate observation population protocols. In: 29th International Conference on Concurrency Theory (CONCUR 2018). LIPIcs, vol. 118, pp. 31:1–31:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  20. Esparza, J., Jaax, S., Raskin, M., Weil-Kennedy, C.: The complexity of verifying population protocols. Distrib. Comput. 34(2), 133–177 (2021). https://doi.org/10.1007/s00446-021-00390-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Esparza, J., Raskin, M., Weil-Kennedy, C.: Parameterized analysis of immediate observation petri nets. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 365–385. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_20

    Chapter  Google Scholar 

  22. Friedman, R., Birman, K.: Trading consistency for availability in distributed systems. Technical report (1996)

    Google Scholar 

  23. Guerraoui, R., Ruppert, E.: Even small birds are unique: population protocols with identifiers (2007)

    Google Scholar 

  24. Guerraoui, R., Ruppert, E.: Names trump malice: tiny mobile agents can tolerate byzantine failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 484–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02930-1_40

    Chapter  Google Scholar 

  25. Karaata, M.H.: Self-stabilizing strong fairness under weak fairness. IEEE Trans. Parallel Distrib. Syst. 12(4), 337–345 (2001)

    Article  Google Scholar 

  26. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols. Theoret. Comput. Sci. 412(22), 2434–2450 (2011)

    Article  MathSciNet  Google Scholar 

  27. Raskin, M.: Population protocols with unreliable communication (2021). arXiv:1902.10041

Download references

Acknowledgements

I thank Javier Esparza for useful discussions and the feedback on the drafts of the present article. I thank Chana Weil-Kennedy for useful discussions. I thank the anonymous reviewers for their valuable feedback on presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Raskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raskin, M. (2021). Population Protocols with Unreliable Communication. In: GÄ…sieniec, L., Klasing, R., Radzik, T. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2021. Lecture Notes in Computer Science(), vol 12961. Springer, Cham. https://doi.org/10.1007/978-3-030-89240-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89240-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89239-5

  • Online ISBN: 978-3-030-89240-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics