Skip to main content

D-LSD: A Distorted Line Segment Detector for Calibrated Images

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13053))

Included in the following conference series:

  • 863 Accesses

Abstract

In this paper, we present an algorithm for the detection of line segments directly on the original, distorted images captured by calibrated wide-angle, fisheye and omnidirectional cameras. Distorted line segments are detected as convex polygonal chains of connected straight lines and then validated as the projection of 3D lines. This last validation step is our main contribution, which is formulated in a generic way in order to allow the detection of line segments from calibrated central projection vision systems and without requiring the rectification of the whole image. We evaluate our method with real images from a publicly available dataset and compare it with state-of-the-art alternatives, achieving comparable line detection performance without requiring image rectification. Additionally, we provide an open source reference implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reference implementation of D-LSD as well as the others’ used for evaluation are publicly available at: https://github.com/dzunigan/line_detection.

  2. 2.

    https://github.com/tum-vision/mono_dataset_code.

References

  1. Akinlar, C., Topal, C.: EDLines: a real-time line segment detector with a false detection control. Pattern Recogn. Lett. 32(13), 1633–1642 (2011). https://doi.org/10.1016/j.patrec.2011.06.001

    Article  Google Scholar 

  2. Akinlar, C., Topal, C.: EDCircles: a real-time circle detector with a false detection control. Pattern Recogn. 46(3), 725–740 (2013). https://doi.org/10.1016/j.patcog.2012.09.020

    Article  Google Scholar 

  3. Angeli, A., Filliat, D., Doncieux, S., Meyer, J.A.: Fast and incremental method for loop-closure detection using bags of visual words. IEEE Trans. Robot. 24(5), 1027–1037 (2008). https://doi.org/10.1109/TRO.2008.2004514

    Article  Google Scholar 

  4. Barreto, J.P.: A unifying geometric representation for central projection systems. Comput. Vis. Image Underst. 103(3), 208–217 (2006). https://doi.org/10.1016/j.cviu.2006.06.003

    Article  Google Scholar 

  5. Briales, J., Gonzalez-Jimenez, J.: A minimal closed-form solution for the perspective three orthogonal angles (P3oA) problem: application to visual odometry. J. Math. Imaging Vis. 55(3), 266–283 (2015). https://doi.org/10.1007/s10851-015-0620-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Briales, J., Gonzalez-Jimenez, J.: A minimal solution for the calibration of a 2D laser-rangefinder and a camera based on scene corners. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1891–1896 (2015). https://doi.org/10.1109/IROS.2015.7353625

  7. Caruso, D., Engel, J., Cremers, D.: Large-scale direct SLAM for omnidirectional cameras. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 141–148 (2015). https://doi.org/10.1109/IROS.2015.7353366

  8. Cheng, G., Han, J.: A survey on object detection in optical remote sensing images. ISPRS J. Photogrammetry Rem. Sens. 117, 11–28 (2016). https://doi.org/10.1016/j.isprsjprs.2016.03.014

    Article  Google Scholar 

  9. Cho, N., Yuille, A., Lee, S.: A novel linelet-based representation for line segment detection. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1195–1208 (2018). https://doi.org/10.1109/TPAMI.2017.2703841

    Article  Google Scholar 

  10. Desolneux, A., Moisan, L., Morel, J.M.: Edge detection by Helmholtz principle. J. Math. Imaging Vis. 14(3), 271–284 (2001)

    Article  Google Scholar 

  11. Devernay, F., Faugeras, O.: Straight lines have to be straight. Mach. Vis. Appl. 13, 14–24 (2019). https://doi.org/10.1007/PL00013269

    Article  Google Scholar 

  12. Engel, J., Usenko, V., Cremers, D.: A photometrically calibrated benchmark for monocular visual odometry. arXiv e-prints p. arXiv:1607.02555 (2016)

  13. Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. 1 (2001). https://doi.org/10.1109/CVPR.2001.990465

  14. Gomez-Ojeda, R., Briales, J., Gonzalez-Jimenez, J.: PL-SVO: Semi-direct monocular visual odometry by combining points and line segments. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4211–4216 (2016). https://doi.org/10.1109/IROS.2016.7759620

  15. Gomez-Ojeda, R., Moreno, F., Zuñiga-Noél, D., Scaramuzza, D., Gonzalez-Jimenez, J.: PL-SLAM: a stereo SLAM system through the combination of points and line segments. IEEE Trans. Robot. 35(3), 734–746 (2019). https://doi.org/10.1109/TRO.2019.2899783

    Article  Google Scholar 

  16. Grompone von Gioi, R., Jakubowicz, J., Morel, J., Randall, G.: LSD: A fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2010). https://doi.org/10.1109/TPAMI.2008.300

  17. Lee, J.H., Zhang, G., Lim, J., Suh, I.H.: Place recognition using straight lines for vision-based SLAM. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3799–3806 (2013). https://doi.org/10.1109/ICRA.2013.6631111

  18. Lu, X., Yao, J., Li, K., Li, L.: CannyLines: a parameter-free line segment detector. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 507–511 (2015). https://doi.org/10.1109/ICIP.2015.7350850

  19. Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015). https://doi.org/10.1109/TRO.2015.2463671

    Article  Google Scholar 

  20. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1, pp. 1. IEEE (2004)

    Google Scholar 

  21. Pǎtrǎucean, V., Gurdjos, P., Grompone von Gioi, R.: Joint a contrario ellipse and line detection. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 788–802 (2017). https://doi.org/10.1109/TPAMI.2016.2558150

  22. Svoboda, T., Pajdla, T.: Epipolar geometry for central catadioptric cameras. Int. J. Comput. Vis. 49, 23–37 (2002). https://doi.org/10.1023/A:1019869530073

    Article  MATH  Google Scholar 

  23. Topal, C., Akinlar, C.: Edge drawing: a combined real-time edge and segment detector. J. Vis. Commun. Image Rep. 23(6), 862–872 (2012). https://doi.org/10.1016/j.jvcir.2012.05.004

    Article  Google Scholar 

  24. Zhang, Y., Wei, D., Li, Y.: AG3line: active grouping and geometry-gradient combined validation for fast line segment extraction. Pattern Recogn. 113, 107834 (2021). https://doi.org/10.1016/j.patcog.2021.107834

  25. Zuñiga-Noël, D., Jaenal, A., Gomez-Ojeda, R., Gonzalez-Jimenez, J.: The UMA-VI dataset: Visual-inertial odometry in low-textured and dynamic illumination environments. Int. J. Robot. Res. 39(9), 1052–1060 (2020). https://doi.org/10.1177/0278364920938439

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Government of Spain and the European Regional Development’s funds (FEDER) under the projects ARPEGGIO (PID2020-117057) and WISER (DPI2017-84827-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco-Angel Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zuñiga-Noël, D., Moreno, FA., Gonzalez-Jimenez, J. (2021). D-LSD: A Distorted Line Segment Detector for Calibrated Images. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13053. Springer, Cham. https://doi.org/10.1007/978-3-030-89131-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89131-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89130-5

  • Online ISBN: 978-3-030-89131-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics