Skip to main content

Handling Missing Observations with an RNN-based Prediction-Update Cycle

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2021)

Abstract

In tasks such as tracking, time-series data inevitably carry missing observations. While traditional tracking approaches can handle missing observations, recurrent neural networks (RNNs) are designed to receive input data in every step. Furthermore, current solutions for RNNs, like omitting the missing data or data imputation, are not sufficient to account for the resulting increased uncertainty. Towards this end, this paper introduces an RNN-based approach that provides a full temporal filtering cycle for motion state estimation. The Kalman filter inspired approach enables to deal with missing observations and outliers. For providing a full temporal filtering cycle, a basic RNN is extended to take observations and the associated belief about its accuracy into account for updating the current state. An RNN prediction model, which generates a parametrized distribution to capture the predicted states, is combined with an RNN update model, which relies on the prediction model output and the current observation. By providing the model with masking information, binary-encoded missing events, the model can overcome limitations of standard techniques for dealing with missing input values. The model abilities are demonstrated on synthetic data reflecting prototypical pedestrian tracking scenarios.

Fraunhofer IOSB is a member of the Fraunhofer Center for Machine Learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 961–971 (2016)

    Google Scholar 

  2. Amirian, J., Hayet, J.B., Pettre, J.: Social ways: learning multi-modal distributions of pedestrian trajectories with GANs. In: Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2964–2972 (2019)

    Google Scholar 

  3. Becker, S., Hug, R., Hübner, W., Arens, M.: RED: a simple but effective baseline predictor for the TrajNet benchmark. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 138–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_13

    Chapter  Google Scholar 

  4. Becker, S., Hug, R., Hübner, W., Arens, M.: An RNN-based IMM filter surrogate. In: Felsberg, M., Forssén, P.-E., Sintorn, I.-M., Unger, J. (eds.) SCIA 2019. LNCS, vol. 11482, pp. 387–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20205-7_32

    Chapter  Google Scholar 

  5. Becker, S.: Dynamic Switching State Systems for Visual Tracking. Ph.D. thesis, Karlsruher Institut für Technologie (KIT) (2020)

    Google Scholar 

  6. Bishop, C.M.: Mixture Density Networks. Technical report, Microsoft Research (1994)

    Google Scholar 

  7. Brownlee, J.: Introduction to time series forecasting with python: how to prepare data and develop models to predict the future. Machine Learning Mastery (2017)

    Google Scholar 

  8. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. (SREP) 8, 6085 (2018)

    Google Scholar 

  9. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., Bengio, Y.: A recurrent latent variable model for sequential data. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 28, pp. 2980–2988 (2015)

    Google Scholar 

  10. De Boor, C.: A practical guide to splines; rev. ed. Applied mathematical sciences, Springer, Berlin (2001)

    Google Scholar 

  11. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2625–2634 (2015)

    Google Scholar 

  12. Giuliari, F., Hasan, I., Cristani, M., Galasso, F.: Transformer networks for trajectory forecasting. In: International Conference on Pattern Recognition (ICPR), pp. 10335–10342 (2021)

    Google Scholar 

  13. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649 (2013)

    Google Scholar 

  14. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2255–2264 (2018)

    Google Scholar 

  15. Hasan, I., Setti, F., Tsesmelis, T., Bue, A.D., Galasso, F., Cristani, M.: MX-LSTM: mixing tracklets and vislets to jointly forecast trajectories and head poses. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6067–6076 (2018)

    Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  17. Hug, R., Becker, S., Hübner, W., Arens, M.: On the reliability of LSTM-MDL models for pedestrian trajectory prediction. In: Chen, L., Ben Amor, B., Ghorbel, F. (eds.) RFMI 2017. CCIS, vol. 842, pp. 20–34. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19816-9_2

    Chapter  Google Scholar 

  18. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  19. Kothari, P., Kreiss, S., Alahi, A.: Human trajectory forecasting in crowds: a deep learning perspective. IEEE Transactions on Intelligent Transportation Systems, pp. 1–15 (2021)

    Google Scholar 

  20. Kreindler, D., Lumsden, C.J.: The effects of the irregular sample and missing data in time series analysis. Nonlinear Dyn. Psychol. Life Sci. 10(2), 187–214 (2006)

    Google Scholar 

  21. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. computer graphic. Forum 26(3), 655–664 (2007)

    Google Scholar 

  22. Lipton, Z.C., Kale, D., Wetzel, R.: Directly modeling missing data in sequences with Rnns: improved classification of clinical time series. In: Proceedings of the 1st Machine Learning for Healthcare Conference, vol. 56, pp. 253–270. PMLR, Children’s Hospital LA, Los Angeles, CA, USA (2016)

    Google Scholar 

  23. Nikhil, N., Morris, B.T.: Convolutional neural network for trajectory prediction. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 186–196. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_16

    Chapter  Google Scholar 

  24. Parveen, S., Green, P.: Speech recognition with missing data using recurrent neural nets. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 1189–1195. MIT Press (2002)

    Google Scholar 

  25. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  26. Pellegrini, S., Ess, A., Schindler, K., van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: International Conference on Computer Vision (ICCV), pp. 261–268 (2009)

    Google Scholar 

  27. Rasouli, A.: Deep Learning for Vision-based Prediction: A Survey. arXiv abs/2007.00095 (2020)

    Google Scholar 

  28. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory understanding in crowded scenes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_33

    Chapter  Google Scholar 

  29. Rudenko, A., Palmieri, L., Herman, M., Kitani, K.M., Gavrila, D.M., Arras, K.O.: Human motion trajectory prediction: a survey. Int. J. Robot. Res. 39, 895–935 (2020)

    Article  Google Scholar 

  30. Saleh, K.: Pedestrian Trajectory Prediction using Context-Augmented Transformer Networks. arXiv abs/2012.01757 (2020)

    Google Scholar 

  31. Schafer, J.L., Graham, J.W.: Missing data: our view of the state of the art. Psychol. Methods 7(2), 147–177 (2002)

    Article  Google Scholar 

  32. Schneider, N., Gavrila, D.M.: Pedestrian path prediction with recursive bayesian filters: a comparative study. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 174–183. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40602-7_18

    Chapter  Google Scholar 

  33. Syed, A., Morris, B.T., et al.: CNN, segmentation or semantic embeddings: evaluating scene context for trajectory prediction. In: George, B. (ed.) ISVC 2020. LNCS, vol. 12510, pp. 706–717. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64559-5_56

    Chapter  Google Scholar 

  34. Teknom, K.: Microscopic Pedestrian Flow Characteristics: Development of an Image Processing Data Collection and Simulation Model. Ph.D. thesis, Tohoku University (2002)

    Google Scholar 

  35. Tresp, V., Briegel, T.: A solution for missing data in recurrent neural networks with an application to blood glucose prediction. In: International Conference on Neural Information Processing Systems (NeurIPS), pp. 971–977. MIT Press, Cambridge, MA, USA (1997)

    Google Scholar 

  36. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning (ICML), vol. 37, pp. 2048–2057. PMLR (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Becker, S., Hug, R., Huebner, W., Arens, M., Morris, B.T. (2021). Handling Missing Observations with an RNN-based Prediction-Update Cycle. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13052. Springer, Cham. https://doi.org/10.1007/978-3-030-89128-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89128-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89127-5

  • Online ISBN: 978-3-030-89128-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics