Skip to main content

Invariant Moments, Textural and Deep Features for Diagnostic MR and CT Image Retrieval

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2021)

Abstract

Image analysis in the medical field aims to offer tools for the diagnosis and detection of life-threatening illness. This study means to propose a novel content-based image retrieval system oriented to medical diagnosis. In particular, we exploit several classic and deep image descriptors together with different similarity measures on three different data set, containing computed tomography and magnetic resonance images. Experiments show that feature selection can bring benefit if applied to deep and texture features, contrary to what observed for invariant moments. Moreover, the cityblock distance emerged to be quite suitable overall in this domain, although some other distances also exhibit satisfying robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lew, M.S., Sebe, N., Djeraba, C., et al.: Content-based multimedia information retrieval: state of the art and challenges. ACM TOMM 2(1), 1–19 (2006)

    Google Scholar 

  2. Putzu, L., Piras, L., Giacinto, G.: Ten years of relevance score for content based image retrieval. In: Perner, P. (ed.) MLDM 2018. LNCS (LNAI), vol. 10935, pp. 117–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96133-0_9

    Chapter  Google Scholar 

  3. Zheng, L., Yang, Y., Tian, Q.: Sift meets CNN: a decade survey of instance retrieval. IEEE Trans. PAMI 40(5), 1224–1244 (2017)

    Google Scholar 

  4. Guillaumin, M., Mensink, T., Verbeek, J., et al.: TagProp: discriminative metric learning in nearest neighbor models for image auto-annotation. In: IEEE ICCV, pp. 309–316 (2009)

    Google Scholar 

  5. Di Ruberto, C., Morgera, A.: Moment-based techniques for image retrieval. In: 2008 19th International Workshop on Database and Expert Systems Applications, pp. 155–159 (2008)

    Google Scholar 

  6. Cao, Y., et al.: Medical image retrieval: a multimodal approach. Cancer Inf. 13s3, CIN.S14053 (2014)

    Google Scholar 

  7. De Oliveira, J.E., Machado, A.M., Chavez, G.C., Lopes, A.P.B., Deserno, T.M., Araújo, A.D.A.: MammoSys: a content-based image retrieval system using breast density patterns. Comp. Meth. Prog. Biom. 99(3), 289–297 (2010)

    Google Scholar 

  8. Çamlica, Z., Tizhoosh, H., Khalvati, F.: Autoencoding the retrieval relevance of medical images. In: International Conference IPTA, pp. 550–555 (2015)

    Google Scholar 

  9. Kumar, Y., Aggarwal, A., Tiwari, S., Singh, K.: An efficient and robust approach for biomedical image retrieval using Zernike moments. Biom. Sig. Proc. Cont. 39, 459–473 (2018)

    Google Scholar 

  10. Karakasis, E., Amanatiadis, A., Gasteratos, A., Chatzichristofis, S.: Image moment invariants as local features for content based image retrieval using the bag-of-visual-words model. Patt. Recog. Lett. 55, 22–27 (2015)

    Google Scholar 

  11. Di Ruberto, C., Loddo, A., Putzu, L.: Histological image analysis by invariant descriptors. In: International Conference ICIAP, vol. 10484, pp. 345–356 (2017)

    Google Scholar 

  12. Shi, M., Avrithis, Y., Jégou, H.: Early burst detection for memory-efficient image retrieval. In: IEEE International Conference CVPR, pp. 605–613 (2015)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS, pp. 1097–1105 (2012)

    Google Scholar 

  14. Wan, J., et al.: Deep learning for content-based image retrieval: a comprehensive study. In: ACM MM, pp. 157–166 (2014)

    Google Scholar 

  15. Ma, L., Liu, X., Gao, Y., et al.: A new method of content based medical image retrieval and its applications to CT imaging sign retrieval. J. Biom. Inf. 66, 148–158 (2017)

    Google Scholar 

  16. Huang, M., Yang, W., Wu, Y., et al.: Content-based image retrieval using spatial layout information in brain tumor T1-weighted contrast-enhanced MR images. PLoS ONE 9(7), 1–13 (2014)

    Google Scholar 

  17. Yang, W., Feng, Q., Yu, M., et al.: Content-based retrieval of brain tumor in contrast-enhanced MRI images using tumor margin information and learned distance metric. Med. Phys. 39(11), 6929–42 (2012)

    Google Scholar 

  18. Mbilinyi, A., Schuldt, H.: Cross-modality medical image retrieval with deep features. In: IEEE International Conference BIBM, pp. 2632–2639. IEEE Computer Society (2020)

    Google Scholar 

  19. Zhong, A., Li, X., Wu, D., et al.: Deep metric learning-based image retrieval system for chest radiograph and its clinical applications in covid-19. Med. Im. Anal. 70, 101993 (2021)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE International Conference CVPR, pp. 770–778 (2016)

    Google Scholar 

  21. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Google Scholar 

  22. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)

    Google Scholar 

  23. Oujaoura, M., Minaoui, B., Fakir, M.: Image annotation by moments. In: Moments and Moment Invariants - Theory and Applications, vol. 1, pp. 227–252 (2014)

    Google Scholar 

  24. Di Ruberto, C., Putzu, L., Rodriguez, G.: Fast and accurate computation of orthogonal moments for texture analysis. Patt. Recogn. 83, 498–510 (2018)

    Google Scholar 

  25. Putzu, L., Di Ruberto, C.: Rotation invariant co-occurrence matrix features. In: International Conference, ICIAP, vol. 10484, pp. 391–401 (2017)

    Google Scholar 

  26. Ojala, T., Pietikäinen, M.T.M.: Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Trans. PAMI 24(7), 971–987 (2002)

    Google Scholar 

  27. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973)

    Google Scholar 

  28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference, NIPS. vol. 1, pp. 1097–1105 (2012)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference ICLR (2015)

    Google Scholar 

  30. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: IEEE Conference CVPR, pp. 1–9 (2015)

    Google Scholar 

  31. Putzu, L., Piras, L., Giacinto, G.: Convolutional neural networks for relevance feedback in content based image retrieval. Mult. Tools Appl. 79, 26995–27021 (2020)

    Google Scholar 

  32. Donahue, J., Jia, Y., Vinyals, O., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: International Conference ML, pp. 647–655 (2014)

    Google Scholar 

  33. Robnik-Sikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 53, 23–69 (2003)

    Google Scholar 

  34. Jurman, G., Riccadonna, S., Visintainer, R., Furlanello, C.: Canberra distance on ranked lists. In: International Workshop Advances in Ranking - NIPS, pp. 22–27 (2009)

    Google Scholar 

  35. Dubay, S., Singh, S., Singh, R.: Local diagonal extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Sign. Proc. Lett. 22(9), 1215–1219 (2015)

    Google Scholar 

  36. Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as a metric for image retrieval. Int. J. CV 40(2), 99–121 (2000)

    Google Scholar 

  37. Sørensen, L., Shaker, S.B., de Bruijne, M.: Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans. Med. Imag. 29(2), 559–569 (2010)

    Google Scholar 

  38. Cheng, J., et al.: Enhanced performance of brain tumor classification via tumor region augmentation and partition. PloS One 10(12), 1–13 (2015)

    Google Scholar 

  39. Marcus, D.S., Wang, T.H., Parker, J., et al.: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neuros. 19(9), 1498–1507 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Putzu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Putzu, L., Loddo, A., Ruberto, C.D. (2021). Invariant Moments, Textural and Deep Features for Diagnostic MR and CT Image Retrieval. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13052. Springer, Cham. https://doi.org/10.1007/978-3-030-89128-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89128-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89127-5

  • Online ISBN: 978-3-030-89128-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics