Skip to main content

Automation in Agriculture

  • Living reference work entry
  • First Online:
Encyclopedia of Smart Agriculture Technologies
  • 116 Accesses

Abstract

Automation in agriculture is increasingly essential for improving efficiency in the production of crops and the quality of their products. Advances in technology have made great contributions in this area, but there is still much more to do. This entry reviews the results of recent research on automation in agriculture, with a special interest in ground-based mobile robotic platforms and their support systems. Various fruit harvesting tasks using robotic systems in both outdoors and in greenhouses are described. Weed control efforts are described using controlled mechanical implements and selective fumigation, in addition to the pruning of vines. Finally, a fleet of heterogeneous and flexible robots is described, which is suitable for making important contributions to agriculture and which, at the same time, are part of Smart Agriculture Technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arad B, Balendonck J, Barth R, Ben-Shahar O, Edan Y, Hellström T, Hemming J, Kurtser P, Ringdahl O, Tielen T, van Tuijl B (2020) Development of a sweet pepper harvesting robot. J Field Robot 37:1027–1039. https://doi.org/10.1002/rob.21937

    Article  Google Scholar 

  • Bengochea-Guevara JM, Andújar D, Sanchez-Sardana FL, Cantuña K, Ribeiro A (2017) A low-cost approach to automatically obtain accurate 3D models of woody crops. Sensors 18(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  • Conesa-Muñoz J, Gonzalez-de-Soto M, Gonzalez-de-Santos P, Ribeiro A (2015) Distributed multi-level supervision to effectively monitor the operations of a fleet of autonomous vehicles in agricultural tasks. Sensors 15(3):5402–5428

    Article  PubMed  PubMed Central  Google Scholar 

  • Conesa-Muñoz J, Bengochea-Guevara JM, Andujar D, Ribeiro A (2016a) Route planning for agricultural tasks: a general approach for fleets of autonomous vehicles in site-specific herbicide applications. Comput Electron Agric 127:204–220

    Article  Google Scholar 

  • Conesa-Muñoz J, Pajares G, Ribeiro A (2016b) Mix-opt: a new route operator for optimal coverage path planning for a fleet in an agricultural environment. Expert Syst Appl 54:364–378

    Article  Google Scholar 

  • FlexiGroBots (2021) Flexible robots for intelligent automation of precision agriculture operations. H2020-EU.2.1.1. Project – funded under industrial leadership. Grant agreement ID: 101017111. https://doi.org/10.3030/101017111

  • Gai J, Tang L, Steward BL (2020) Automated crop plant detection based on the fusion of color and depth images for robotic weed control. J Field Robot 37:35–52. https://doi.org/10.1002/rob.2189752

    Article  Google Scholar 

  • Gonzalez-de-Santos P, Ribeiro A, Fernandez-Quintanilla C, Lopez-Granados F, Brandstoetter M, Tomic S, Pedrazzi S et al (2017) Fleets of robots for environmentally-safe pest control in agriculture. Precis Agric 18(4):574–614

    Article  Google Scholar 

  • Grimstad L, From P (2017) The Thorvald II agricultural robotic system. Robotics 6(4):24. https://doi.org/10.3390/robotics6040024

    Article  Google Scholar 

  • He L, Schupp J (2018) Sensing and automation in pruning of apple trees: a review. Agronomy 8:211. https://doi.org/10.3390/agronomy8100211

    Article  Google Scholar 

  • Pérez-Ruiz M, Gonzalez-de-Santos P, Ribeiro A, Fernández-Quintanilla C, Peruzzi A, Vieri M, Tomic S, Agüera J (2015) Highlights and preliminary results for autonomous crop protection. Comput Electron Agric 110:150–161

    Article  Google Scholar 

  • Reiser D, Sehsah E-S, Bumann O, Morhard J, Griepentrog HW (2019) Development of an autonomous electric robot implement for intra-row weeding in vineyards. Agriculture 9(1):18

    Article  Google Scholar 

  • Rovira-Más F, Saiz-Rubio V (2021) Robotics for precision viticulture. In: Innovation in agricultural robotics for precision agriculture. Springer, Cham, pp 91–115

    Chapter  Google Scholar 

  • Santos LKC (2018) El uso de la tecnología en la agricultura. Pro Sciences 2(14):25–32

    Article  Google Scholar 

  • Sparrow R, Howard M (2021) Robots in agriculture: prospects, impacts, ethics, and policy. Precis Agric 22:818–833. https://doi.org/10.1007/s11119-020-09757-9

    Article  Google Scholar 

  • Utstumo T, Urdal F, Brevik A, Dørum J, Netland J, Overskeid Ø, Berge TW, Gravdahl JT (2018) Robotic in-row weed control in vegetables. Comput Electron Agric 154:36–45. https://doi.org/10.1016/j.compag.2018.08.043

    Article  Google Scholar 

  • Wang LL, Zhao B, Fan JW, Hu XA, Wei S, Li YS, Zhou Q, Wei C (2017) Development of a tomato harvesting robot used in greenhouse. Int J Agric Biol Eng 10(4):140–149

    Google Scholar 

  • Wu X, Aravecchia S, Pradalier C (2019) Design and implementation of computer vision based in-row weeding system. In; International Conference on Robotics and Automation (ICRA), pp 4218–4224. https://doi.org/10.1109/ICRA.2019.8793974

  • Wu X, Aravecchia S, Lottes P, Stachniss C, Pradalier C (2020) Robotic weed control using automated weed and crop classification. HAL-Id: hal-02484462. https://hal.archives-ouvertes.fr/hal-02484462

  • Xiong Y, Ge Y, Grimstad L, From PJ (2019) An autonomous strawberry-harvesting robot: design, development, integration, and field evaluation. J Field Robot 37(1):202–224

    Google Scholar 

Download references

Acknowledgments

The authors of this entry are grateful to the FlexiGroBots projects funded by the European Union under the H2020 Programme with Grant Agreement Id. 101017111; grant PDC2021-121537-C21 funded by MCIN/AEI/10.13039/501100011033, and grant PID2020-113229RB-C43 funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR.” Hector Montes thanks SENACYT for the support it provides to its members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Ribeiro .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Montes, H., Ribeiro, A. (2023). Automation in Agriculture. In: Zhang, Q. (eds) Encyclopedia of Smart Agriculture Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-89123-7_226-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89123-7_226-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89123-7

  • Online ISBN: 978-3-030-89123-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics