Skip to main content

Effect of Hydrogen and Defects on Deformation and Failure of Austenitic Stainless Steel

  • Chapter
  • First Online:
Recent Developments in Analytical Techniques for Corrosion Research
  • 804 Accesses

Abstract

Austenitic stainless steels are used for a variety of applications and could suffer degradation of properties when exposed to hydrogen. The performance of these steels are also dependent on crystallographic texture which in practice is a factor influenced by manufacturing processes. A study has been performed using a crystal plasticity based finite element model to understand the effect of crystal orientation with respect to loading direction for FCC single crystals in both hydrogenated and non-hydrogenated environment. The purpose of the study is to understand the effect of crystal orientation on how hydrogen influences plastic deformation and void growth. Simulations have been performed for a variety of stress triaxilaities, Lode parmeters and hydrogen concentrations. It is observed that initial crystal orientation has a varied effect on the influence hydrogen has on plastic deformation and void growth. Hydrogen in trap distribution at various stages of the deformation process was also found to be influenced by intial crystal orientation. Hydrogen affects the evolution of crystal rotation during deformation but was not found to significantly affect the general pattern of crystal orientation evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.I. Wright, D.P. Field, Recent studies of local texture and its influence on failure. Mater. Sci. Eng. A 257(1), 165–170 (1998)

    Article  Google Scholar 

  2. V. Venegas, F. Caleyo, T. Baudin, J.H. Espina-Hernández, J.M. Hallen, On the role of crystallographic texture in mitigating hydrogen-induced cracking in pipeline steels. Corros. Sci. 53(12), 4204–4212 (2011)

    Article  CAS  Google Scholar 

  3. M. Masoumi, C.C. Silva, H.F.G. de Abreu, Effect of crystallographic orientations on the hydrogen-induced cracking resistance improvement of API 5L X70 pipeline steel under various thermomechanical processing. Corros. Sci. 111, 121–131 (2016)

    Article  CAS  Google Scholar 

  4. T. Graham, On the occlusion of hydrogen gas by metals, Proc. R. Soc. London, 422–427 (1868)

    Google Scholar 

  5. W. Johnson, On some remarkable changes produced in iron and steel by the action of hydrogen and acids. R. Soc. London 14(2), 168–179 (1874)

    Google Scholar 

  6. S.P. Lynch, Progress towards the understanding of mechanisms of hydrogen embrittlement and stress corrosion cracking. NACE Corros. 2007 Conf. Expo (07493), 1–55 (2007)

    Google Scholar 

  7. I.M. Robertson, H.K. Birnbaum, P. Sofronis, Hydrogen effects on plasticity 15(09) (2009)

    Google Scholar 

  8. M. Hatano, M. Fujinami, K. Arai, H. Fujii, M. Nagumo, Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies. Acta Mater. 67, 342–353 (2014)

    Article  CAS  Google Scholar 

  9. Y. Mine, T. Kimoto, Hydrogen uptake in austenitic stainless steels by exposure to gaseous hydrogen and its effect on tensile deformation. Corros. Sci. 53(8), 2619–2629 (2011)

    Article  CAS  Google Scholar 

  10. P. Birnbaum, H. K., Sofronis, “Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture,” Mater. Sci. Eng. A, vol. 176, no. 1–2, pp. 191–202, 1994.

    Google Scholar 

  11. Y. Yagodzinskyy, T. Saukkonen, S. Kilpeläinen, F. Tuomisto, H. Hänninen, Effect of hydrogen on plastic strain localization in single crystals of austenitic stainless steel. Scr. Mater. 62(3), 155–158 (2010)

    Article  CAS  Google Scholar 

  12. Y. Yagodzinskyy, E. Malitckii, T. Saukkonen, and H. Hanninen, Hydrogen-induced strain localization in austenitic stainless steels and possible origins of their hydrogen embrittlement, in 2nd International Conference on Metals and Hydrogen, 2014, May, pp. 203–213 (2014)

    Google Scholar 

  13. D.P. Abraham, C.J. Altstetter, Hydrogen-enhanced localization of plasticity in an austenitic stainless steel. Metall. Mater. Trans. A 26(11), 2859–2871 (1995)

    Article  Google Scholar 

  14. G.P. Potirniche et al., Role of crystallographic texture on the improvement of hydrogen-induced crack resistance in API 5L X70 pipeline steel. Int. J. Hydrogen Energy 42(3), 14786–14793 (2017)

    Google Scholar 

  15. M. Béreš et al., Role of lattice strain and texture in hydrogen embrittlement of 18Ni (300) maraging steel. Int. J. Hydrogen Energy 42(21), 14786–14793 (2017)

    Article  Google Scholar 

  16. G.P. Potirniche, J.L. Hearndon, M.F. Horstemeyer, X.W. Ling, Lattice orientation effects on void growth and coalescence in fcc single crystals. Int. J. Plast 22(5), 921–942 (2006)

    Article  CAS  Google Scholar 

  17. U. Asim, M.A. Siddiq, M. Demiral, Void growth in high strength aluminium alloy single crystals: A CPFEM based study, Model. Simul. Mater. Sci. Eng. 25(3), 035010 (2017)

    Google Scholar 

  18. T. Michler, C. San Marchi, J. Naumann, S. Weber, M. Martin, Hydrogen environment embrittlement of stable austenitic steels. Int. J. Hydrogen Energy 37(21), 16231–16246 (2012)

    Google Scholar 

  19. Z. Hua, B. An, T. Iijima, C. Gu, J. Zheng, The finding of crystallographic orientation dependence of hydrogen diffusion in austenitic stainless steel by scanning Kelvin probe force microscopy. Scr. Mater. 131, 47–50 (2017)

    Article  CAS  Google Scholar 

  20. E.G. Astafurova et al., Hydrogen-enhanced orientation dependence of stress relaxation and strain-aging in Hadfield steel single crystals. Scr. Mater. 136, 101–105 (2017)

    Article  CAS  Google Scholar 

  21. E.B. Marin, On the formulation of a crystal plasticity model. Sandia National Laboratories (2006)

    Google Scholar 

  22. A. Siddiq, S. Schmauder, Simulation of hardening in high purity niobium single crystals during deformation. Steel Grips J. Steel Relat. Mater. 3(4), 281–286 (2005)

    CAS  Google Scholar 

  23. E.I. Ogosi, U.B. Asim, M.A. Siddiq, M.E. Kartal, Modelling hydrogen induced stress corrosion cracking in austenitic stainless steel. J. Mech. 36(2), 213–222 (2020)

    Article  CAS  Google Scholar 

  24. R. Hill, J.R. Rice, Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 20(6), 401–413 (1972)

    Article  Google Scholar 

  25. H.K. Birnbaumt, P. Sofronis, Mechanics of the hydrogen-dislocation-impurity interactions-I. Increasing shear modulus. J. Mech. Phys. Solids 43(1), 49–90 (1995)

    Article  Google Scholar 

  26. R.A. Oriani, Hydrogen embrittlement of steels. Annu. Rev. Mater. Sci. 8(1), 327–357 (1978)

    Article  CAS  Google Scholar 

  27. G. Schebler, On the mechanics of the hydrogen interaction with single crystal plasticity. University of Illinois (2011)

    Google Scholar 

  28. E. Ogosi, A. Siddiq, U.B. Asim, M.E. Kartal, Crystal plasticity based study to understand the interaction of hydrogen, defects and loading in austenitic stainless steel single crystals. Int. J. Hydrogen Energy

    Google Scholar 

  29. Y. Estrin, H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metall. 32(1), 57–70 (1984)

    Article  Google Scholar 

  30. A. Krom, Numerical modelling of hydrogen transport of steel (1998)

    Google Scholar 

  31. G.R.J. Caskey, Hydrogen solubility in austenitic stainless steels. Scr. Metall. 34(2), 1187–1190 (1981)

    Article  Google Scholar 

  32. T. Luo, X. Gao, On the prediction of ductile fracture by void coalescence and strain localization. J. Mech. Phys. Solids 113, 82–104 (2018)

    Article  Google Scholar 

  33. C. Tekoglu, J.W. Hutchinson, T. Pardoen, On localization and void coalescence as a precursor to ductile fracture. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373(2038) (2015)

    Google Scholar 

  34. Dassault Systèmes Simulia Corp, “ABAQUS 6.18.” Providence, p. 2018 (2018)

    Google Scholar 

  35. U.B. Asim, M.A. Siddiq, M.E. Kartal, Representative volume element (RVE) based crystal plasticity study of void growth on phase boundary in titanium alloys. Comput. Mater. Sci. 161, 346–350 (2019)

    Article  CAS  Google Scholar 

  36. C. Tekoglu, Representative volume element calculations under constant stress triaxiality, lode parameter, and shear ratio. Int. J. Solids Struct. 51(25–26), 4544–4553 (2014)

    Article  Google Scholar 

  37. O. Barrera, D. Bombac, Y. Chen, T.D. Daff, P. Gong, D. Haley, Understanding and mitigating hydrogen embrittlement of steels : a review of experimental, modelling and design progress from atomistic to continuum. J. Mater. Sci. 53(9), 6251–6290 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Siddiq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ogosi, E., Siddiq, A., Asim, U.B., Kartal, M.E. (2022). Effect of Hydrogen and Defects on Deformation and Failure of Austenitic Stainless Steel. In: Toor, I.u. (eds) Recent Developments in Analytical Techniques for Corrosion Research . Springer, Cham. https://doi.org/10.1007/978-3-030-89101-5_11

Download citation

Publish with us

Policies and ethics