Skip to main content

Design of Flexure Hinges Using Geometrically Nonlinear Topology Optimization

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13013))

Included in the following conference series:

  • 3719 Accesses

Abstract

Topology optimization has been employed for the configurational design of flexure hinges under linear assumption in recent years. This paper presents a method for the design of flexure hinges with large displacements in which the nonlinear topology optimization is adopted. An optimization model is developed based on the spring model. The objective function is formulated by minimizing the stiffness in the desired direction. A rotational index is proposed and serves as one of the constraints for accomplishing the high precision revolute requirement. A symmetry constraint is employed to improve the practicability of the optimized results. A minimal length scale control technique is adopted to avoid point flexure issue. Several numerical results are performed to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendsoe, M.P.: Topology Optimization: Theory, Methods, and Applications, 2nd edn. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-05086-6

    Book  MATH  Google Scholar 

  2. Chen, Q., Zhang, X., Zhang, H., Zhu, B., Chen, B.: Topology optimization of bistable mechanisms with maximized differences between switching forces in forward and backward direction. Mech. Mach. Theor. 139, 131–143 (2019)

    Article  Google Scholar 

  3. Chen, Q., Zhang, X., Zhu, B.: Design of buckling-induced mechanical metamaterials for energy absorption using topology optimization. Struct. Multidiscip. Optim. 58(4), 1395–1410 (2018)

    Article  MathSciNet  Google Scholar 

  4. Christiansen, R.E., Wang, F., Sigmund, O.: Topological insulators by topology optimization. Phys. Rev. Lett. 122(23), 234502 (2019)

    Article  Google Scholar 

  5. Hopkins, J.B., Culpepper, M.L.: Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (fact)-part i: principles. Precis. Eng. 34(2), 259–270 (2010)

    Article  Google Scholar 

  6. Howell, L.L.: Compliant Mechanisms. Wiley, Hoboken (2001)

    Google Scholar 

  7. Li, L., Zhu, X.: Design of compliant revolute joints based on mechanism stiffness matrix through topology optimization using a parameterization level set method. Struct. Multidiscip. Optim. 60(4), 1475–1489 (2019)

    Article  MathSciNet  Google Scholar 

  8. Liu, L., Xing, J., Yang, Q., Luo, Y.: Design of large-displacement compliant mechanisms by topology optimization incorporating modified additive hyperelasticity technique. Math. Probl. Eng. 2017, 11 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Liu, M., Zhang, X., Fatikow, S.: Design and analysis of a multi-notched flexure hinge for compliant mechanisms. Precis. Eng. 48, 292–304 (2017)

    Article  Google Scholar 

  10. Liu, M., Zhang, X., Fatikow, S.: Design of flexure hinges based on stress-constrained topology optimization. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 231(24), 4635–4645 (2017)

    Article  Google Scholar 

  11. Pinskier, J., Shirinzadeh, B., Ghafarian, M., Das, T.K., Al-Jodah, A., Nowell, R.: Topology optimization of stiffness constrained flexure-hinges for precision and range maximization. Mech. Mach. Theor. 150, 103874 (2020)

    Article  Google Scholar 

  12. Qiu, L., Yue, X., Xie, Z.: Design and analysis of multicavity flexure hinge (MCFH) based on three-dimensional continuum topology optimization. Mech. Mach. Theor. 139, 21–33 (2019)

    Article  Google Scholar 

  13. Shi, C., et al.: Recent advances in nanorobotic manipulation inside scanning electron microscopes. Microsyst. Nanoeng. 2(1), 1–16 (2016)

    Article  Google Scholar 

  14. Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33(4–5), 401–424 (2007)

    Article  Google Scholar 

  15. Wang, F., Lazarov, B.S., Sigmund, O., Jensen, J.S.: Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput. Meth. Appl. Mech. Eng. 276, 453–472 (2014)

    Article  MathSciNet  Google Scholar 

  16. Wang, M.Y.: A kinetoelastic formulation of compliant mechanism optimization. J. Mech. Robot. 1(2), 021011 (2009)

    Article  Google Scholar 

  17. Wang, R., Zhang, X.: Parameters optimization and experiment of a planar parallel 3-DOF nanopositioning system. IEEE Trans. Ind. Electron. 65, 2388–2397 (2018)

    Article  Google Scholar 

  18. Wang, Y., Luo, Z., Zhang, X., Kang, Z.: Topological design of compliant smart structures with embedded movable actuators. Smart Mater. Struct. 23(4), 045024 (2014)

    Article  Google Scholar 

  19. Weisbord, L., Paros, J.: How to design flexure hinges. Mach. Des. 27(3), 151–157 (1965)

    Google Scholar 

  20. Yong, Y.K., Lu, T.F., Handley, D.C.: Review of circular flexure hinge design equations and derivation of empirical formulations. Precis. Eng. 32(2), 63–70 (2008)

    Article  Google Scholar 

  21. Zhou, M., Lazarov, B.S., Wang, F., Sigmund, O.: Minimum length scale in topology optimization by geometric constraints. Comput. Meth. Appl. Mech. Eng. 293, 266–282 (2015)

    Article  MathSciNet  Google Scholar 

  22. Zhu, B., Zhang, X., Fatikow, S.: Design of single-axis flexure hinges using continuum topology optimization method. Sci. Chin. Technol. Sci. 57(3), 560–567 (2014)

    Article  Google Scholar 

  23. Zhu, B., Zhang, X., Liu, M., Chen, Q., Li, H.: Topological and shape optimization of flexure hinges for designing compliant mechanisms using the level set method. Chin. J. Mech. Eng. 32(1), 13 (2019)

    Article  Google Scholar 

  24. Zhi, B., et al.: Design of compliant mechanisms using continuum topology optimization: a review. Mech. Mach. Theor. 143, 103622 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 51975216, 52035013), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021B1515020053), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rixin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, B. et al. (2021). Design of Flexure Hinges Using Geometrically Nonlinear Topology Optimization. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13013. Springer, Cham. https://doi.org/10.1007/978-3-030-89095-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89095-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89094-0

  • Online ISBN: 978-3-030-89095-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics