Skip to main content

The Review of Image Processing Based on Graph Neural Network

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Abstract

Convolutional neural networks have ushered in significant advancements in the field of image processing. Convolutional neural networks, on the other hand, operate well with European geographic data, whereas graph neural networks function better with non-European geographical data. This paper summarizes the application of image processing based on graph neural network. First, this article introduces the development history of graphs and graph neural networks and then explains the graphs’ concept and structure. Secondly, it focuses on the graph convolutional neural network, and details the graph convolutional neural network of spectrum and space. Finally, for graph convolutional neural network application in image processing, three processing methods are concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  2. Cai, D., Lam, W.: Graph transformer for graph-to-sequence learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 7464–7471 (2020)

    Google Scholar 

  3. Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional networks. In: International Conference on Machine Learning, pp. 1725–1735. PMLR (2020)

    Google Scholar 

  4. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375 (2016)

  5. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. arXiv preprint arXiv:1706.02216 (2017)

  6. Hechtlinger, Y., Chakravarti, P., Qin, J.: A generalization of convolutional neural networks to graph-structured data. arXiv preprint arXiv:1704.08165 (2017)

  7. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163 (2015)

  8. Hong, D., Gao, L., Yao, J., Zhang, B., Plaza, A., Chanussot, J.: Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. (2020)

    Google Scholar 

  9. Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1219–1228 (2018)

    Google Scholar 

  10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  11. Lee, C.-W., Fang, W., Yeh, C.-K., Wang, Y.-C.F.: Multi-label zero-shot learning with structured knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1576–1585 (2018)

    Google Scholar 

  12. Li, J., Qin, H., Wang, J., Li, J.: Openstreetmap-based autonomous navigation for the four wheel-legged robot via 3D-lidar and CCD camera. IEEE Trans. Ind. Electron. (2021)

    Google Scholar 

  13. Li, J., Wang, J., Peng, H., Hu, Y., Su, H.: Fuzzy-torque approximation enhanced sliding mode control for lateral stability of mobile robot. IEEE Trans. Syst. Man Cybern. Syst. (2021)

    Google Scholar 

  14. Li, J., Wang, J., Peng, H., Zhang, L., Hu, Y., Su, H.: Neural fuzzy approximation enhanced autonomous tracking control of the wheel-legged robot under uncertain physical interaction. Neurocomputing 410, 342–353 (2020)

    Article  Google Scholar 

  15. Li, J., et al.: Parallel structure of six wheel-legged robot trajectory tracking control with heavy payload under uncertain physical interaction. Assembly Autom. 40(5), 675–687 (2020)

    Article  Google Scholar 

  16. Li, J., Wang, S., Wang, J., Li, J., Zhao, J., Ma, L.: Iterative learning control for a distributed cloud robot with payload delivery. Assembly Autom. 41(3), 263–273 (2021)

    Article  Google Scholar 

  17. Li, J., Wu, Q., Wang, J., Li, J.: Neural networks-based sliding mode tracking control for the four wheel-legged robot under uncertain interaction. Int. J. Robust Nonlinear Control 31(9), 1–18 (2021)

    Google Scholar 

  18. Li, J., Zhang, X., Li, J., Liu, Y., Wang, J.: Building and optimization of 3d semantic map based on lidar and camera fusion. Neurocomputing 409, 394–407 (2020)

    Article  Google Scholar 

  19. Li, R., Wang, S., Zhu, F., Huang, J.: Adaptive graph convolutional neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  20. Ma, F., Gao, F., Sun, J., Zhou, H., Hussain, A.: Attention graph convolution network for image segmentation in big SAR imagery data. Remote Sens. 11(21), 2586 (2019)

    Article  Google Scholar 

  21. Narasimhan, M., Lazebnik, S., Schwing, A.G.: Out of the box: Reasoning with graph convolution nets for factual visual question answering. arXiv preprint arXiv:1811.00538 (2018)

  22. Norcliffe-Brown, W., Vafeias, E., Parisot, S.: Learning conditioned graph structures for interpretable visual question answering. arXiv preprint arXiv:1806.07243 (2018)

  23. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

    Article  Google Scholar 

  24. Shi, Y., Li, Q., Zhu, X.X.: Building segmentation through a gated graph convolutional neural network with deep structured feature embedding. ISPRS J. Photogrammetry Remote Sens. 159, 184–197 (2020)

    Article  Google Scholar 

  25. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  26. Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set feature learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 52–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_4

    Chapter  Google Scholar 

  27. Wang, M., Zhao, H., Xie, X., Li, W., Guo, M.: Knowledge graph convolutional networks for recommender systems. In: The World Wide Web Conference, pp. 3307–3313 (2019)

    Google Scholar 

  28. Wang, S., Chen, Z., Li, J., Wang, J., Li, J., Zhao, J.: Flexible motion framework of the six wheel-legged robot: experimental results. IEEE/ASME Trans. Mechatron. 1–9 (2021)

    Google Scholar 

  29. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  30. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  31. Yang, C., Chen, C., He, W., Cui, R., Li, Z.: Robot learning system based on adaptive neural control and dynamic movement primitives. IEEE Trans. Neural Networks Learn. Syst. 30(3), 777–787 (2018)

    Article  MathSciNet  Google Scholar 

  32. Yang, C., Jiang, Y., Li, Z., He, W., Su, C.-Y.: Neural control of bimanual robots with guaranteed global stability and motion precision. IEEE Trans. Ind. Inform. 13(3), 1162–1171 (2016)

    Article  Google Scholar 

  33. Yang, X., Tang, K., Zhang, H., Cai, J.: Auto-encoding scene graphs for image captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10685–10694 (2019)

    Google Scholar 

  34. Zhang, X., Liu, H., Li, Q., Wu, X.-M.: Attributed graph clustering via adaptive graph convolution. arXiv preprint arXiv:1906.01210 (2019)

  35. Zhang, Z., Chen, T., Wang, M., Zheng, L.: An exponential-type anti-noise varying-gain network for solving disturbed time-varying inversion systems. IEEE Trans. Neural Networks Learn. Syst. 31(9), 3414–3427 (2020)

    Article  MathSciNet  Google Scholar 

  36. Zhu, D., et al.: Understanding place characteristics in geographic contexts through graph convolutional neural networks. Ann. Am. Assoc. Geographers 110(2), 408–420 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Guangdong Key Laboratory of Intelligent Transportation System under Grant 202005004, the Natural Science Foundation of Guangdong Province under Grant 2018A030313753 and the National Natural Science Foundation of China under Grant 62073090 and 61473331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nie, J., Xu, Y., Huang, Y., Li, J. (2021). The Review of Image Processing Based on Graph Neural Network. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13016. Springer, Cham. https://doi.org/10.1007/978-3-030-89092-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89092-6_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89091-9

  • Online ISBN: 978-3-030-89092-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics