Skip to main content

Stability Analysis of Linear Delay Systems via Internally Positive Representations: An Overview

  • Chapter
  • First Online:
Accounting for Constraints in Delay Systems

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 12))

Abstract

The stability analysis of time-delay systems is a tough task even in the linear case, especially when time-varying delays are considered. In recent years, for the class of positive delay systems, a number of insightful works appeared in the literature, highlighting their peculiar stability properties, which lead to simple and easy to check necessary and sufficient conditions for the delay-independent stability. This fact poses the question whether some results that hold for positive systems can be exported to arbitrary systems. In some recent papers we gave an answer to this question by extending to the time-delay setting the Internally Positive Representation technique, a method that allows to systematically construct positive representations of arbitrary systems. In this work, after a survey on recent stability results for positive delay systems, an overview of the Internally Positive Representation technique and of its implications on the stability analysis of arbitrary systems is reported. Three classes of linear systems are considered: delay differential, delay difference, and coupled delay differential-difference systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ait Rami, Stability analysis and synthesis for linear positive systems with time-varying delays, in Positive Systems (Springer, 2009), pp. 205–2015

    Google Scholar 

  2. A.Y. Aleksandrov, O. Mason, Absolute stability and Lyapunov-Krasovskii functionals for switched nonlinear systems with time-delay. J. Franklin Inst. 351(8), 4381–4394 (2014)

    Article  MathSciNet  Google Scholar 

  3. C.E. Avellar, J.K. Hale, On the zeros of exponential polynomials. J. Math. Anal. Appl. 73(2), 434–452 (1980)

    Article  MathSciNet  Google Scholar 

  4. L. Benvenuti, L. Farina, The design of fiber-optic filters. J. Lightwave Technol. 19(9), 1366–1375 (2001)

    Article  Google Scholar 

  5. L. Benvenuti, L. Farina, B.D. Anderson, Filtering through combination of positive filters. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 46(12), 1431–1440 (1999)

    Article  Google Scholar 

  6. R.K. Brayton, Nonlinear oscillations in a distributed network. Q. Appl. Math. 24(4), 289–301 (1967)

    Article  Google Scholar 

  7. F. Cacace, L. Farina, A. Germani, C. Manes, Internally positive representation of a class of continuous time systems. IEEE Trans. Autom. Control 57(12), 3158–3163 (2012)

    Article  MathSciNet  Google Scholar 

  8. F. Cacace, A. Germani, C. Manes, Stable internally positive representations of continuous time systems. IEEE Trans. Autom. Control 59(4), 1048–1053 (2014)

    Article  MathSciNet  Google Scholar 

  9. F. Cacace, A. Germani, C. Manes, A new approach to design interval observers for linear systems. IEEE Trans. Autom. Control 60(6), 1665–1670 (2015)

    Article  MathSciNet  Google Scholar 

  10. F. Cacace, A. Germani, C. Manes, R. Setola, A new approach to the internally positive representation of linear MIMO systems. IEEE Trans. Autom. Control 57(1), 119–134 (2012)

    Article  MathSciNet  Google Scholar 

  11. J. Chen, C. Lien, K. Fan, J. Cheng, Delay-dependent stability criterion for neutral time-delay systems. Electron. Lett. 36(22), 1897–1898 (2000)

    Article  Google Scholar 

  12. F. Conte, V. De Iuliis, C. Manes, Internally positive representations and stability analysis of linear delay systems with multiple time-varying delays, in Positive Systems: Theory and Applications (POSTA 2016) Rome, Italy, 14–16 Sept. 2016 (Springer, 2017), pp. 81–93

    Google Scholar 

  13. S. Damak, M. Di Loreto, W. Lombardi, V. Andrieu, Stability analysis for a class of linear systems governed by difference equations (2013). arXiv:1312.7210 (2013)

  14. S. Damak, M. Di Loreto, W. Lombardi, V. Andrieu, A bridge between Lyapunov-Krasovskii and spectral approaches for difference equations, in Recent Results on Time-Delay Systems (Springer, 2016), pp. 107–124

    Google Scholar 

  15. V. De Iuliis, Internally Positive Representations and Stability Analysis of Linear Delay Systems. Ph.D. thesis (2018)

    Google Scholar 

  16. V. De Iuliis, A. D’Innocenzo, A. Germani, C. Manes, Internally positive representations and stability analysis of linear differential systems with multiple time-varying delays. IET Control Theory Appl. 13(7), 920–927 (2019). https://doi.org/10.1049/iet-cta.2018.5280

    Article  MathSciNet  MATH  Google Scholar 

  17. V. De Iuliis, A. Germani, C. Manes, Internally positive representations and stability analysis of linear difference systems with multiple delays. IFAC-PapersOnLine 50(1), 3099 – 3104 (2017). 20th IFAC World Congress

    Google Scholar 

  18. V. De Iuliis, A. Germani, C. Manes, Internally Positive Representations and stability analysis of coupled differential-difference systems with time-varying delays. IEEE Trans. Autom. Control 64(6), 2514–2521 (2019). https://doi.org/10.1109/TAC.2018.2866467

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Di Loreto, J.J. Loiseau, On the stability of positive difference equations, in Time Delay Systems: Methods, Applications and New Trends (Springer, 2012), pp. 19–33

    Google Scholar 

  20. L. Farina, S. Rinaldi. Positive Linear Systems: Theory and Applications, vol. 50 (Wiley, 2011)

    Google Scholar 

  21. E. Fridman, New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Syst. Control Lett. 43(4), 309–319 (2001)

    Article  MathSciNet  Google Scholar 

  22. E. Fridman, Stability of linear descriptor systems with delay: a Lyapunov-based approach. J. Math. Anal. Appl. 273(1), 24–44 (2002)

    Article  MathSciNet  Google Scholar 

  23. E. Fridman, Introduction to Time-Delay Systems (Birkhäuser Basel, 2014)

    Google Scholar 

  24. A. Germani, C. Manes, P. Palumbo, State space representation of a class of MIMO systems via positive systems, in 2007 46th IEEE Conference on Decision and Control (IEEE, 2007), pp. 476–481

    Google Scholar 

  25. A. Germani, C. Manes, P. Palumbo, Representation of a class of MIMO systems via internally positive realization. Eur. J. Control 16(3), 291–304 (2010)

    Article  MathSciNet  Google Scholar 

  26. K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems (Birkhäuser Basel, 2003)

    Google Scholar 

  27. K. Gu, Y. Liu, Lyapunov-Krasovskii functional for uniform stability of coupled differential-functional equations. Automatica 45(3), 798–804 (2009)

    Article  MathSciNet  Google Scholar 

  28. K. Gu, S.I. Niculescu, Survey on recent results in the stability and control of time-delay systems. J. Dyn. Syst. Meas. Control 125(2), 158–165 (2003)

    Article  Google Scholar 

  29. W.M. Haddad, V. Chellaboina, Stability theory for nonnegative and compartmental dynamical systems with time delay. Syst. Control Lett. 51(5), 355–361 (2004)

    Article  MathSciNet  Google Scholar 

  30. J.K. Hale, M.A. Cruz, Existence, uniqueness and continuous dependence for hereditary systems. Annali di matematica pura ed applicata 85(1), 63–81 (1970)

    Article  MathSciNet  Google Scholar 

  31. J.K. Hale, S.M.V. Lunel, Introduction to Functional Differential Equations (Springer, New York, 1993)

    Book  Google Scholar 

  32. Y. He, M. Wu, J.H. She, G.P. Liu, Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. Syst. Control Lett. 51(1), 57–65 (2004)

    Article  MathSciNet  Google Scholar 

  33. J.M. Hendrickx, A. Olshevsky, Matrix p-norms are NP-hard to approximate if p \(\ne 1,2,\infty \). SIAM J. Matrix Anal. Appl. 31(5), 2802–2812 (2010)

    Article  MathSciNet  Google Scholar 

  34. G.D. Hu, G.D. Hu, Some simple criteria for stability of neutral delay-differential systems. Appl. Math. Comput. 80(2–3), 257–271 (1996)

    Google Scholar 

  35. I. Kabakov, On steam pressure control. Inzh. shornik 2, 27–60 (1946)

    Google Scholar 

  36. T. Kaczorek, Stability of positive continuous-time linear systems with delays, in Control Conference (ECC), 2009 European (IEEE, 2009), pp. 1610–1613

    Google Scholar 

  37. H. Li, K. Gu, Discretized Lyapunov-Krasovskii functional for coupled differential-difference equations with multiple delay channels. Automatica 46(5), 902–909 (2010)

    Article  MathSciNet  Google Scholar 

  38. L.M. Li, Stability of linear neutral delay-differential systems. Bull. Austral. Math. Soc. 38, 339–344 (1988)

    Article  MathSciNet  Google Scholar 

  39. X. Liu, W. Yu, L. Wang, Stability analysis for continuous-time positive systems with time-varying delays. IEEE Trans. Autom. Control 55(4), 1024–1028 (2010)

    Article  MathSciNet  Google Scholar 

  40. D. Luenberger, Introduction to Dynamic Systems: Theory, Models, and Applications (Wiley, 1979)

    Google Scholar 

  41. P. Martinez-Amores, Periodic solutions of coupled systems of differential and difference equations. Annali di Matematica Pura ed Applicata 121(1), 171–186 (1979)

    Article  MathSciNet  Google Scholar 

  42. D. Melchor-Aguilar, Exponential stability of linear continuous time difference systems with multiple delays. Syst. Control Lett. 62(10), 811–818 (2013)

    Article  MathSciNet  Google Scholar 

  43. W.R. Melvin, Stability properties of functional difference equations. J. Math. Anal. Appl. 48(3), 749–763 (1974)

    Article  MathSciNet  Google Scholar 

  44. T. Mori, N. Fukuma, M. Kuwahara, Simple stability criteria for single and composite linear systems with time delays. Int. J. Control 34(6), 1175–1184 (1981)

    Article  MathSciNet  Google Scholar 

  45. T. Mori, N. Fukuma, M. Kuwahara, On an estimate of the decay rate for stable linear delay systems. Int. J. Control 36(1), 95–97 (1982)

    Article  MathSciNet  Google Scholar 

  46. B. Nagy, M. Matolcsi, Minimal positive realizations of transfer functions with nonnegative multiple poles. IEEE Trans. Autom. Control 50(9), 1447–1450 (2005)

    Article  MathSciNet  Google Scholar 

  47. B. Nagy, M. Matolcsi, M. Szilvasi, Order bound for the realization of a combination of positive filters. IEEE Trans. Autom. Control 52(4), 724–729 (2007)

    Article  MathSciNet  Google Scholar 

  48. P.H.A. Ngoc, Stability of positive differential systems with delay. IEEE Trans. Autom. Control 58(1), 203–209 (2013)

    Article  MathSciNet  Google Scholar 

  49. P.H.A. Ngoc, H. Trinh, Novel criteria for exponential stability of linear neutral time-varying differential systems. IEEE Trans. Autom. Control 61(6), 1590–1594 (2016)

    Article  MathSciNet  Google Scholar 

  50. S.I. Niculescu, Delay Effects on Stability: A Robust Control Approach, vol. 269 (Springer, 2001)

    Google Scholar 

  51. S.I. Niculescu, On delay-dependent stability under model transformations of some neutral linear systems. Int. J. Control 74(6), 609–617 (2001)

    Article  MathSciNet  Google Scholar 

  52. J.H. Park, S. Won, A note on stability of neutral delay-differential systems. J. Franklin Inst. 336(3), 543–548 (1999)

    Article  MathSciNet  Google Scholar 

  53. P. Pepe, The Liapunov’s second method for continuous time difference equations. Int. J. Robust Nonlinear Control 13(15), 1389–1405 (2003)

    Article  MathSciNet  Google Scholar 

  54. P. Pepe, On the asymptotic stability of coupled delay differential and continuous time difference equations. Automatica 41(1), 107–112 (2005)

    MathSciNet  MATH  Google Scholar 

  55. P. Pepe, Direct and converse Lyapunov theorems for functional difference systems. Automatica 50(12), 3054–3066 (2014)

    Article  MathSciNet  Google Scholar 

  56. P. Pepe, E.I. Verriest, On the stability of coupled delay differential and continuous time difference equations. IEEE Trans. Autom. Control 48(8), 1422–1427 (2003)

    Article  MathSciNet  Google Scholar 

  57. V. Rasvan, Absolute Stability of a Class of Control Processes Described by Functional Differential Equations of Neutral Type (Hermann, Equations Differentielles et Fonctionelles Nonlineaires, Paris, 1973)

    Google Scholar 

  58. V. Rasvan, Functional differential equations of lossless propagation and almost linear behavior, in Plenary Lecture at 6th IFAC Workshop on Time-Delay Systems, L’Aquila, Italy (2006)

    Google Scholar 

  59. G.M. Schoen, Stability and stabilization of time-delay systems. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, Switzerland (1995). http://e-collection.library.ethz.ch

  60. G.M. Schoen, H.P. Geering, On stability of time delay systems, in Proceedings of the 31st Annual Allerton Conference on Communication, Control and Computer, Monticello, Il, pp. 1058–1060 (1993)

    Google Scholar 

  61. J. Shen, W.X. Zheng, Positivity and stability of coupled differential-difference equations with time-varying delays. Automatica 57, 123–127 (2015)

    Article  MathSciNet  Google Scholar 

  62. R.A. Silkowski, Star-shaped regions of stability in hereditary systems. Ph.D. thesis (1976)

    Google Scholar 

  63. O. Toker, H. Özbay, Complexity issues in robust stability of linear delay-differential systems. Math. Control Signals Syst. (MCSS) 9(4), 386–400 (1996)

    Google Scholar 

  64. E.I. Verriest, S.I. Niculescu, Delay-independent stability of linear neutral systems: a Riccati equation approach, in Stability and control of time-delay systems (Springer, 1998), pp. 92–100

    Google Scholar 

  65. S.S. Wang, C.H. Lee, T.H. Hung, New stability analysis of system with multiple time delays, in American Control Conference (ACC 1991), pp. 1703 – 1704 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costanzo Manes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Iuliis, V., Germani, A., Manes, C. (2022). Stability Analysis of Linear Delay Systems via Internally Positive Representations: An Overview. In: Valmorbida, G., Michiels, W., Pepe, P. (eds) Accounting for Constraints in Delay Systems. Advances in Delays and Dynamics, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-89014-8_2

Download citation

Publish with us

Policies and ethics