Skip to main content

How Severe is Water Stress in the MENA Region? Insights from GRACE and GRACE-FO Satellites and Global Hydrological Modeling

  • Chapter
  • First Online:
Applications of Space Techniques on the Natural Hazards in the MENA Region

Abstract

Freshwater scarcity in the Middle East and North Africa (MENA) is increasingly exacerbated by rapid population growth demands and climate change and currently impacts ~0.6 billion people in the region. In this chapter, we revisited the trends in terrestrial water storage (TWS) over the last 18 years between 2002 and 2020 using observations of the Gravity Recovery and Climate Experiment and its Follow On (GRACE-FO) missions. We evaluated the interdecadal TWS trends in the MENA region against the variability of climate-driven TWS between 1901 and 2020 derived from GRACE, GRACE-FO, and natural simulation of the global WaterGAP hydrological model. Climate-driven TWS represents TWS anomalies that are only forced by non-anthropogenic stressors and vary from annual cycle to centennial variations. These TWS patterns were derived using the cyclostationary empirical orthogonal functions method over grid and MENA’s polygon scales. The interdecadal trend of TWS in the MENA region shows that the entire MENA region lost about ~760 Gigaton (Gt) between 2002 and 2020, equivalent to ~2.6x the annual rate of ice loss from Greenland or ~ 2 mm of global sea-level increase. Depletion is more severe in the Middle East (e.g., Iran, Saudi Arabia) than in North Africa, except for Tunisia. Current GRACE-GRACE (FO) TWS depletion trends in MENA exceed past climate variability magnitude by at least a factor of 50 (considering GRACE period only), especially in northern Saudi Arabia, southern and eastern Iran, western Iraq, Egypt, Libya, and Algeria. These regions are characterized by a hyper-arid climate, an absence of groundwater recharge, overexploitation of surface water and groundwater resources. Sustainable surface and groundwater management is more urgent than ever to meet increasing demands. Interpreting GRACE trends relative to the magnitude and variability of climate-driven interannual and interdecadal variations helps to evaluate the reliability and forecast skills of current TWS trends and highlights the role of the anthropogenic activity in draining MENA’s water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, M. (2020). Sustainable management scenarios for northern Africa’s fossil aquifer systems. Journal of Hydrology, 589, 125196.

    Article  Google Scholar 

  • Albarakat, R., Lakshmi, V., & Tucker, C. J. R. S. (2018). Using satellite remote sensing to study the impact of climate and anthropogenic changes in the Mesopotamian marshlands, Iraq. Remote Sensing, 10(10), 1524.

    Article  Google Scholar 

  • Amante C, Eakins BW. ETOPO1 arc-minute global relief model: Procedures, data sources and analysis. 2009.

    Google Scholar 

  • Bank, W. (2017). Beyond scarcity: Water security in the Middle East and North Africa. The World Bank.

    Google Scholar 

  • Chen, J. L., Wilson, C. R., & Tapley, B. D. (2010). The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resource Research, 46(12). https://doi.org/10.1029/2010wr009383

  • Chen, X., Jiang, J., & Li, H. (2018). Drought and flood monitoring of the Liao River basin in Northeast China using extended GRACE data. Remote Sens-Basel, 10(8), 1168. https://doi.org/10.3390/rs10081168

    Article  Google Scholar 

  • Cikurel, H., Guttman, J., & Aharoni, A. (2012). Managed aquifer recharge for agricultural reuse in Shafdan, Israel. In Water reclamation technologies for safe managed aquifer recharge (pp. 83–102). IWA Publishing.

    Google Scholar 

  • Dawoud, M. A. (2020). Strategic water reserve using aquifer recharge with desalinated water in Abu Dhabi Emirate. Desalination and Water Treatment, 176, 123–130.

    Article  Google Scholar 

  • Doell, P., Mueller Schmied, H., Schuh, C., Portmann, F. T., & Eicker, A. (2014). Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Water Resources Research, 50(7), 5698–5720.

    Article  Google Scholar 

  • Döll, P., Kaspar, F., & Lehner, B. (2003). A global hydrological model for deriving water availability indicators: Model tuning and validation. Journal of Hydrology, 270(1–2), 105–134.

    Article  Google Scholar 

  • Döll, P., Fritsche, M., Eicker, A., & Müller, S. H. (2014). Seasonal water storage variations as impacted by water abstractions: Comparing the output of a global hydrological model with GRACE and GPS observations. Surveys in Geophysics, 35(6), 1311–1331. https://doi.org/10.1007/s10712-014-9282-2

    Article  Google Scholar 

  • Eicker, A., Schumacher, M., Kusche, J., Döll, P., & Schmied, H. M. (2014). Calibration/data assimilation approach for integrating GRACE data into the WaterGAP global hydrology model (WGHM) using an ensemble Kalman filter: First results. Surveys in Geophysics, 35(6), 1285–1309. https://doi.org/10.1007/s10712-014-9309-8

    Article  Google Scholar 

  • Frappart, F. (2020). Groundwater storage changes in the major North African transboundary aquifer systems during the GRACE Era (2003–2016). Water, 12(10), 2669.

    Article  Google Scholar 

  • Frappart, F., & Ramillien, G. (2018). Monitoring groundwater storage changes using the gravity recovery and climate experiment (GRACE) satellite Mission: A review. Remote Sens-Basel, 10(6), 829. https://doi.org/10.3390/rs10060829

    Article  Google Scholar 

  • Issa, I., Al-Ansari, N., Sherwany, G., & Knutsson, S. (2013). Trends and future challenges of water resources in the Tigris–Euphrates Rivers basin in Iraq. Hydrology and Earth System Sciences Discussions, 10(12), 14617–14644.

    Google Scholar 

  • Joodaki, G., Wahr, J., & Swenson, S. (2014). Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resources Research, 50(3), 2679–2692. https://doi.org/10.1002/2013wr014633

    Article  Google Scholar 

  • Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R., & Kushnir, Y. (2015). Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proceedings of the National Academy of Sciences of the United States of America, 112(11), 3241–3246. https://doi.org/10.1073/pnas.1421533112

    Article  Google Scholar 

  • Kim, K.-Y., & North, G. R. (1997). EOFs of harmonizable cyclostationary processes. Journal of the Atmospheric Sciences, 54(19), 2416–2427.

    Article  Google Scholar 

  • Kim, K.-Y., North, G. R., & Huang, J. (1996). EOFs of one-dimensional cyclostationary time series: Computations, examples, and stochastic modeling. Journal of Atmospheric Sciences, 53(7), 1007–1017.

    Article  Google Scholar 

  • Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T., Bertiger, W. I., et al. (2020). Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophysical Research Letters, 47(12), e2020GL088306.

    Article  Google Scholar 

  • Longuevergne, L., Wilson, C. R., Scanlon, B. R., & Cretaux, J. F. (2013). GRACE water storage estimates for the Middle East and other regions with significant reservoir and lake storage. Hydrology and Earth System Sciences, 17, 4817–4830., doi:105194/hess-17-4817-2013, 2013.

    Article  Google Scholar 

  • Loomis, B., Rachlin, K., & Luthcke, S. (2019). Improved earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise. Geophysical Research Letters, 46(12), 6910–6917.

    Article  Google Scholar 

  • Maliva RG. Anthropogenic aquifer recharge and water quality. Anthropogenic aquifer recharge. Springer; 2020. p. 133–164.

    Google Scholar 

  • Müller Schmied, H., Adam, L., Eisner, S., Fink, G., Flörke, M., Kim, H., et al. (2016). Impact of climate forcing uncertainty and human water use on global and continental water balance components. Proceedings of the International Association of Hydrological Sciences, 374, 53–62.

    Article  Google Scholar 

  • Observatory NE: Turkey Experiences Intense Drought. (2021). Accessed.

    Google Scholar 

  • Parimalarenganayaki, S. (2020). Managed aquifer Recharge in the Gulf countries: A review and selection criteria. Arabian Journal for Science and Engineering, 1–15.

    Google Scholar 

  • Peltier, R. W., Argus, D. F., & Drummond, R. (2018). Comment on “an assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. Journal of Geophysical Research: Solid Earth, 123(2), 2019–2028. https://doi.org/10.1002/2016jb013844

    Article  Google Scholar 

  • Qadir, M., Bahri, A., Sato, T., & Al-Karadsheh, E. (2010). Wastewater production, treatment, and irrigation in Middle East and North Africa. Irrigation and Drainage Systems, 24(1), 37–51.

    Article  Google Scholar 

  • Rateb, A., & Kuo, C. Y. (2019). Quantifying vertical deformation in the Tigris-Euphrates Basin due to the groundwater abstraction: Insights from GRACE and Sentinel-1 satellites. Water, 11(8), 1658. https://doi.org/10.3390/w11081658

    Article  Google Scholar 

  • Rateb, A., Scanlon, B. R., Pool, D. R., Sun, A., Zhang, Z., Chen, J., et al. (2020a). Comparison of groundwater storage changes from GRACE satellites with monitoring and modeling of major U.S. aquifers. Water Resource Research, 56(12), e2020WR027556. https://doi.org/10.1029/2020WR027556

    Article  Google Scholar 

  • Rateb, A., Scanlon, B. R., & Chung-Yen, K. (2020b). Multi-decadal assessment of water resources in the Tigris-Euphrates Basin using satellites, hydrological modeling, and in-situ data science of the total environment. The Science of the Total Environment.

    Google Scholar 

  • Reager, J. T., Thomas, B. F., & Famiglietti, J. S. (2014). River basin flood potential inferred using GRACE gravity observations at several months lead time. Nature Geoscience, 7(8), 588–592. https://doi.org/10.1038/ngeo2203

    Article  Google Scholar 

  • Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., et al. (2018). Emerging trends in global freshwater availability. Nature, 557(7707), 651–659. https://doi.org/10.1038/s41586-018-0123-1

    Article  Google Scholar 

  • Russo, T. A., & Lall, U. (2017). Depletion and response of deep groundwater to climate-induced pumping variability. Nature Geoscience, 10(2), 105–108. https://doi.org/10.1038/ngeo2883

    Article  Google Scholar 

  • Save, H., Bettadpur, S., & Tapley, B. D. (2016). High-resolution CSR GRACE RL05 mascons. Journal of Geophysical Research: Solid Earth, 121(10), 7547–7569. https://doi.org/10.1002/2016jb013007

    Article  Google Scholar 

  • Scanlon, B. R., Zhang, Z., Save, H., Wiese, D. N., Landerer, F. W., Long, D., et al. (2016). Global evaluation of new GRACE mascon products for hydrologic applications. Water Resources Research, 52(12), 9412–9429. https://doi.org/10.1002/2016wr019494

    Article  Google Scholar 

  • Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Muller Schmied, H., van Beek, L. P. H., et al. (2018). Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proceedings of the National Academy of Sciences of the United States of America, 115(6), E1080–E10E9. https://doi.org/10.1073/pnas.1704665115

    Article  Google Scholar 

  • Scanlon, B., Zhang, Z., Rateb, A., Sun, A., Wiese, D., Save, H., et al. (2019). Tracking seasonal fluctuations in land water storage using global models and GRACE satellites. Geophysical Research Letters, 46(10), 5254–5264.

    Article  Google Scholar 

  • Schmied, H. M., Eisner, S., Franz, D., Wattenbach, M., Portmann, F. T., Flörke, M., et al. (2014). Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrology and Earth System Sciences, 18(9), 3511–3538.

    Article  Google Scholar 

  • Stuyfzand, P. J., Smidt, E., Zuurbier, K. G., Hartog, N., & Dawoud, M. A. (2017). Observations and prediction of recovered quality of desalinated seawater in the strategic ASR project in Liwa, Abu Dhabi. Water., 9(3), 177.

    Article  Google Scholar 

  • Sun, Y., Riva, R., & Ditmar, P. (2016). Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. Journal of Geophysical Research: Solid Earth, 121(11), 8352–8370.

    Article  Google Scholar 

  • Swenson, S., Chambers, D., & Wahr, J. (2008). Estimating geocenter variations from a combination of GRACE and ocean model output. Journal of Geophysical Research: Solid Earth, 113(B8). https://doi.org/10.1029/2007jb005338

  • Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9). https://doi.org/10.1029/2004gl019920

  • USDA. (n.d.). Grain and Feed Annual Saudi Arabia. https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Grain%20and%20Feed%20Annual_Riyadh_Saudi%20Arabia_3-14-2016.pdf2016. pp. 18.

  • Voss, K. A., Famiglietti, J. S., Lo, M., Linage, C., Rodell, M., & Swenson, S. C. (2013). Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resources Research, 49(2), 904–914. https://doi.org/10.1002/wrcr.20078

    Article  Google Scholar 

  • Wahr, J., Molenaar, M., & Bryan, F. (1998). Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research: Solid Earth, 103(B12), 30205–30229. https://doi.org/10.1029/98jb02844

    Article  Google Scholar 

  • Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., & Landerer, F. W. (2015). Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research: Solid Earth, 120(4), 2648–2671. https://doi.org/10.1002/2014jb011547

    Article  Google Scholar 

  • Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., & Viterbo, P. (2014). The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-interim reanalysis data. Water Resources Research, 50(9), 7505–7514.

    Article  Google Scholar 

  • WRI: Aqueduct Water Risk Atlas. (2019). Accessed 2021.

    Google Scholar 

  • Xiao, R., He, X., Zhang, Y., Ferreira, V., & Chang, L. (2015). Monitoring groundwater variations from satellite Gravimetry and hydrological models: A comparison with in-situ measurements in the Mid-Atlantic region of the United States. Remote Sens-Basel, 7(1), 686–703. https://doi.org/10.3390/rs70100686

    Article  Google Scholar 

  • Zekri, S. (2020). Water policies in MENA countries. Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Rateb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rateb, A., Scanlon, B.R., Fakhreddine, S. (2022). How Severe is Water Stress in the MENA Region? Insights from GRACE and GRACE-FO Satellites and Global Hydrological Modeling. In: Al Saud, M.M. (eds) Applications of Space Techniques on the Natural Hazards in the MENA Region. Springer, Cham. https://doi.org/10.1007/978-3-030-88874-9_4

Download citation

Publish with us

Policies and ethics