Skip to main content

Coherence via Focusing for Symmetric Skew Monoidal Categories

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13038))

Abstract

The symmetric skew monoidal categories of Bourke and Lack are a weakening of Mac Lane’s symmetric monoidal categories where: (i) the three structural laws of left and right unitality and associativity are not required to be invertible, they are merely natural transformations with a specific orientation; (ii) the structural law of symmetry is a natural isomorphism involving three objects rather than two. In this paper we study the structural proof theory of symmetric skew monoidal categories, progressing the project initiated by Uustalu et al. on deductive systems for categories with skew structure. We discuss three equivalent presentations of the free symmetric skew monoidal category on a set of generating objects: a Hilbert-style categorical calculus; a cut-free sequent calculus; a focused subsystem of derivations, corresponding to a sound and complete goal-directed proof search strategy for the cut-free sequent calculus. Focusing defines an effective normalization procedure for maps in the free symmetric skew monoidal category, as such solving the coherence problem for symmetric skew monoidal categories.

This work was supported by the Estonian Research Council grant PSG659 and by the ESF funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altenkirch, A., Chapman, J., Uustalu, T.: Monads need not be endofunctors. Log. Methods Comput. Sci. 11(1), Article 3 (2015). https://doi.org/10.2168/lmcs-11(1:3)

  2. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log. Comput. 2(3), 297–347 (1992). https://doi.org/10.1093/logcom/2.3.297

    Article  Google Scholar 

  3. Bourke, J.: Skew structures in 2-category theory and homotopy theory. J. Homotopy Relat. Struct. 12(1), 31–81 (2015). https://doi.org/10.1007/s40062-015-0121-z

    Article  Google Scholar 

  4. Bourke, J., Lack, S.: Free skew monoidal categories. J. Pure Appl. Alg. 222(10), 3255–3281 (2018). https://doi.org/10.1016/j.jpaa.2017.12.006

    Article  Google Scholar 

  5. Bourke, J., Lack, S.: Skew monoidal categories and skew multicategories. J. Alg. 506, 237–266 (2018). https://doi.org/10.1016/j.jalgebra.2018.02.039

    Article  Google Scholar 

  6. Bourke, J., Lack, S.: Braided skew monoidal categories. Theor. Appl. Categ. 35(2), 19–63 (2020). http://www.tac.mta.ca/tac/volumes/35/2/35-02abs.html

  7. Buckley, M., Garner, R., Lack, S., Street, R.: The Catalan simplicial set. Math. Proc. Cambridge Philos. Soc. 158(12), 211–222 (2014). https://doi.org/10.1017/s0305004114000498

    Article  Google Scholar 

  8. Chaudhuri, K., Pfenning, F.: Focusing the inverse method for linear logic. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 200–215. Springer, Heidelberg (2005). https://doi.org/10.1007/11538363_15

    Chapter  Google Scholar 

  9. Curien, P.L., Obradović, J., Ivanović, J.: Syntactic aspects of hypergraph polytopes. J. Homotopy Relat. Struct. 14(1), 235–279 (2019). https://doi.org/10.1007/s40062-018-0211-9

  10. Davydov, A., Runkel, I.: An Alternative Description of Braided Monoidal Categories. Appl. Categ. Struct. 23(3), 279–309 (2013). https://doi.org/10.1007/s10485-013-9338-3

    Article  Google Scholar 

  11. Dehornoy, P.: Efficient solutions to the braid isotopy problem. Discret. Appl. Math. 156(16), 3091–3112 (2008). https://doi.org/10.1016/j.dam.2007.12.009

    Article  Google Scholar 

  12. Dosen, K., Petrić, Z.: Proof-Theoretical Coherence. King’s College Publications (2004)

    Google Scholar 

  13. Fleury, A.: Ribbon braided multiplicative linear logic. Mat. Contemp. 24, 39–70 (2003). https://www.mat.unb.br/~matcont/24_3.pdf

  14. Garside, F.A.: The braid group and other groups. Quart. J. Math. Oxford 20(1), 235–254 (1969). https://doi.org/10.1093/qmath/20.1.235

    Article  Google Scholar 

  15. Hasegawa, M.: A braided lambda calculus. Paper presented at Joint Workshop on Linearity & TLLA 2020. https://www.cs.unibo.it/~dallago/TLLALINEARITY2020/A_Braided_Lambda_Calculus.pdf

  16. Hyland, M., de Paiva, V.: Full intuitionistic linear logic (extended abstract). Ann. Pure Appl. Log. 64(3), 273–291 (1993). https://doi.org/10.1016/0168-0072(93)90146-5

    Article  Google Scholar 

  17. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993). https://doi.org/10.1006/aima.1993.1055

    Article  Google Scholar 

  18. Kelly, G.M.: On Mac Lane’s conditions for coherence of natural associativities, commutativities, etc. J. Alg. 1(4), 397–402 (1964). https://doi.org/10.1016/0021-8693(64)90018-3

    Article  Google Scholar 

  19. Lack, S., Street, R.: Skew monoidales, skew warpings and quantum categories. Theor. Appl. Categ. 26, 385–402 (2012). http://www.tac.mta.ca/tac/volumes/26/15/26-15abs.html

  20. Lack, S., Street, R.: Triangulations, orientals, and skew monoidal categories. Adv. Math. 258, 351–396 (2014). https://doi.org/10.1016/j.aim.2014.03.003

    Article  Google Scholar 

  21. Lambek, J.: Deductive systems and categories I: syntactic calculus and residuated categories. Math. Syst. Theory 2(4), 287–318 (1968). https://doi.org/10.1007/bf01703261

    Article  Google Scholar 

  22. Mac Lane, S.: Natural associativity and commutativity. Rice Univ. Stud. 49(4), 28–46 (1963). http://hdl.handle.net/1911/62865

  23. Mellies, P.-A.: Ribbon tensorial logic. In: Dawar, A., Grädel, E. (eds.) Proceedings of 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, pp. 689–698. ACM (2018). https://doi.org/10.1145/3209108.3209129

  24. Mints, G.E.: Closed categories and the theory of proofs, Zap. Nauchn. Sem. LOMI 68, 83–114 (1977). (in Russian). Translated in 1981 in J. Sov. Math. 15, pp. 45–62. https://doi.org/10.1007/bf01404107. Reprinted in 1992 in Selected Papers in Proof Theory, Studies in Proof Theory 3, 183–212. Bibliopolis/North-Holland

  25. Shulman, M.: A practical type theory for symmetric monoidal categories. arXiv eprint 1911.00818 (2019). https://arxiv.org/abs/1911.00818

  26. Szabo, M.E.: Algebra of Proofs. Studies in Logic and the Foundations of Mathematics 88. North-Holland (1978)

    Google Scholar 

  27. Szlachányi, K.: Skew-monoidal categories and bialgebroids. Adv. Math. 231(3–4), 1694–1730 (2012). https://doi.org/10.1016/j.aim.2012.06.027

    Article  Google Scholar 

  28. Uustalu, T.: Coherence for skew-monoidal categories. In: Levy, P., Krishnaswami, N. (eds.). Proceedings of 5th Workshop on Mathematically Structured Programming, MSFP 2014, Electronic Proceedings in Theoretical Computer Science, vol. 153, pp. 68–77. Open Publishing Assoc. (2014). https://doi.org/10.4204/eptcs.153.5

  29. Uustalu, T., Veltri, N., Zeilberger, N.: The sequent calculus of skew monoidal categories. In: Casadio, C., Scott, P.J. (eds.) Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics. OCL, vol. 20, pp. 377–406. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66545-6_11

    Chapter  Google Scholar 

  30. Uustalu, T., Veltri, N., Zeilberger, N.: Proof theory of partially normal skew monoidal categories. In: Spivak, D. I., Vicary, J. (eds.). Proceedings of 3rd Applied Category Theory Conference, ACT 2020. Electronic Proceedings in Theoretical Computer Science, vol. 333, pp. 230–246. Open Publishing Association (2020). https://doi.org/10.4204/eptcs.333.16

  31. Uustalu, T., Veltri, N., Zeilberger, N.: Deductive systems and coherence for skew prounital closed categories. In: Sacerdoti Coen, C., Tiu, A. (eds.). Proceedings of 15th International Workshop on Logical Frameworks and Metalanguages: Theory and Practice, LFMTP 2020. Electronic Proceedings in Theoretical Computer Science, vol. 332, pp. 35–53. Open Publishing Association (2020). https://doi.org/10.4204/eptcs.332.3

  32. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical framework: the propositional fragment. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 355–377. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24849-1_23

    Chapter  Google Scholar 

  33. Zeilberger, N.: A sequent calculus for a semi-associative law. Log. Methods Comput. Sci. 15(1), Article 9 (2019). https://doi.org/10.23638/lmcs-15(1:9)2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niccolò Veltri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Veltri, N. (2021). Coherence via Focusing for Symmetric Skew Monoidal Categories. In: Silva, A., Wassermann, R., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2021. Lecture Notes in Computer Science(), vol 13038. Springer, Cham. https://doi.org/10.1007/978-3-030-88853-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88853-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88852-7

  • Online ISBN: 978-3-030-88853-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics