Skip to main content

Analysis in a Formal Predicative Set Theory

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2021)

Abstract

We present correct and natural development of fundamental analysis in a predicative set theory we call \({\mathsf {PZF}^{\mathsf {U}}}\). This is done by using a delicate and careful choice of those Dedekind cuts that are adopted as real numbers. \({\mathsf {PZF}^{\mathsf {U}}}\) is based on ancestral logic rather than on first-order logic. Its key feature is that it is definitional in the sense that every object which is shown in it to exist is defined by some closed term of the theory. This allows for a very concrete, computationally-oriented model of it, and makes it very suitable for MKM (Mathematical Knowledge Management) and ITP (Interactive Theorem Proving). The development of analysis in \({\mathsf {PZF}^{\mathsf {U}}}\) does not involve coding, and the definitions it provides for the basic notions (like continuity) are the natural ones, almost the same as one can find in any standard analysis book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This has already been demonstrated in an initial implementation made in Tel Aviv university.

  2. 2.

    In [3] the theory \({\mathsf {RST}^{\mathsf {HF},\mathsf {U}}}\) was presented. The theory \({\mathsf {PZF}^{\mathsf {U}}}\) is a stronger version of it.

  3. 3.

    Although the \(\in \)-induction scheme is a part of \(\mathsf {PZF}\)/\({\mathsf {PZF}^{\mathsf {U}}}\), we shall never use this scheme in this work.

  4. 4.

    In the literature these are referred as “rudimentary functions”. We prefer to call them “rudimentary operations”, because we reserve the word “function” only for objects that exist as sets.

  5. 5.

    For more information about the rudimentary operations see [8].

  6. 6.

    These are usually referred as functions symbols.

  7. 7.

    Actually, [3, 5] deal with the systems \({\mathsf {RST}^{\mathsf {HF}}}\) and \({\mathsf {RST}^{\mathsf {HF},\mathsf {U}}}\). Since \(\mathsf {PZF}\) is stronger than these theories, all the development done there is also available in \(\mathsf {PZF}\).

  8. 8.

    We remind the reader that \(\bar{x}\) stands for \(x_1 ,\ldots ,x_n\).

  9. 9.

    See also Remark 5.

References

  1. Avron, A.: A framework for formalizing set theories based on the use of static set terms. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 87–106. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78127-1_6

    Chapter  Google Scholar 

  2. Avron, A.: A new approach to predicative set theory. In: Schindler, R. (ed.) Ways of Proof Theory, Onto Series in Mathematical Logic, vol. 2, pp. 31–63. Onto Verlag (2010)

    Google Scholar 

  3. Avron, A., Cohen, L.: Formalizing scientifically applicable mathematics in a definitional framework. J. Formaliz. Reason. 9(1), 53–70 (2016)

    Google Scholar 

  4. Cantone, D., Omodeo, E., Policriti, A.: Set Theory for Computing: From Decision Procedures to Declarative Programming with Sets. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4757-3452-2

    Book  Google Scholar 

  5. Cohen, L., Avron, A.: Applicable mathematics in a minimal computational theory of sets. Log. Methods Comput. Sci. 14 (2018)

    Google Scholar 

  6. Cohen, L., Avron, A.: The middle ground-ancestral logic. Synthese 196(7), 2671–2693 (2015). https://doi.org/10.1007/s11229-015-0784-3

    Article  Google Scholar 

  7. De Bruijn, N.G.: A survey of the project AUTOMATH. In: Studies in Logic and the Foundations of Mathematics, vol. 133, pp. 141–161. Elsevier (1994)

    Google Scholar 

  8. Devlin, K.J.: Constructibility, vol. 6. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  9. Feferman, S.: Systems of predicative analysis. J. Symb. Log. 29(1), 1–30 (1964)

    Article  Google Scholar 

  10. Feferman, S.: A more perspicuous formal system for predicativity. Konstruktionen versus Positionen 1, 68–93 (1978)

    Article  Google Scholar 

  11. Fraenkel, A.A., Bar-Hillel, Y., Levy, A.: Foundations of Set Theory. Elsevier, Amsterdam (1973)

    Google Scholar 

  12. Landau, E.: Foundations of Analysis. Chelsea Publishing Company, New York (1951).Translated from German ‘Grundlagen der Analysis’ by F. Steinhardt

    Google Scholar 

  13. Martin, R.M.: A homogeneous system for formal logic. J. Symb. Log. 8(1), 1–23 (1943)

    Article  Google Scholar 

  14. Myhill, J.: A derivation of number theory from ancestral theory. J. Symb. Log. 17(3), 192–197 (1952)

    Article  Google Scholar 

  15. Nederpelt, R.P., Geuvers, J.H., de Vrijer, R.C.: Selected Papers on Automath. Elsevier, Amsterdam (1994)

    Google Scholar 

  16. Poincaré, H.: Les mathematiques et la logique. Revue de Metaphysique et de Morale 14(3), 294–317 (1906). http://www.jstor.org/stable/40893278

  17. Poincaré, H.: Derni‘ere pensees. Flammarion, Paris (1913). Trans. by J. Bolduc as Mathematics and Science: Last Essays (1963)

    Google Scholar 

  18. Shapiro, S.: Foundations Without Foundationalism: A Case for Second-Order Logic, vol. 17. Clarendon Press, Oxford (1991)

    Google Scholar 

  19. Simpson, S.G.: Subsystems of Second Order Arithmetic, vol. 1. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  20. Weyl, H.: Das kontinuum: Kritische Untersuchungen. über die Grundlagen der Analysis (1918)

    Google Scholar 

  21. Wiedijk, F.: The QED manifesto revisited. Stud. Log. Gramm. Rhetor. 10(23), 121–133 (2007)

    Google Scholar 

  22. Zucker, J.: Formalization of classical mathematics in AUTOMATH. In: Studies in Logic and the Foundations of Mathematics, vol. 133, pp. 127–139. Elsevier (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnon Avron .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Proof

(proof of Theorem 2). We prove the case of \(\mathsf {PZF}\) (the case of \({\mathsf {PZF}^{\mathsf {U}}}\) is identical). In the following proof we argue in \(\mathsf {PZF}\) .

Define first the formula \(\varphi \) to be:

$$\begin{aligned}&\big (f=\emptyset \wedge g = \{\langle 0,t_i \rangle \} \big )\ \vee \\&\big ( f\ne \emptyset \wedge g = f \cup \{\langle {\mathsf {dom}} \langle f \rangle ,t_s\{{\mathsf {dom}} \langle f \rangle /n ,f({\mathsf {dom}} \langle f \rangle -1)/p\} \rangle \} \big ) \end{aligned}$$

Informally, we set g to be the finite sequence achieved from the finite sequence f by expanding the domain of f by 1 according to the “step function” \(t_s\). Obviously \(\varphi \succ _{{\mathsf {PZF}^{\mathsf {U}}}}\{g\} \). Let

$$ X=\{ g \mid g=\{\langle 0,t_i \rangle \} \vee \exists f. f = \emptyset \wedge ({\mathsf {TC}}_{f,g}\varphi )(f,g)\} $$

and define \(t_\mathsf {rec}= \cup X\). Obviously \(t_\mathsf {rec}\) is a term of \(\mathsf {PZF}\).

Let \(x_1 ,\ldots ,x_n\) be n sets. We observe first that for all \(g \in X\) it holds that:

$$\begin{aligned} \mathsf {seqFin}[g] \wedge g(0)=t_i \wedge \forall n \in {\mathsf {dom}} \langle g \rangle . n>0 \rightarrow g(n)=t_s\{g(n-1)/p\} \end{aligned}$$
(5)

The proof is by a straightforward application of the induction rule for the \({\mathsf {TC}}\) operator.

Next we prove that \({\mathsf {func}} [t_\mathsf {rec}]\). Since every \(g \in X\) is a function s.t. \({\mathsf {dom}} \langle g \rangle \subseteq {\mathbb {N}}\), it is obvious that \({\mathsf {rel}} [t_\mathsf {rec}]\), and that \({\mathsf {dom}} \langle t_\mathsf {rec} \rangle \subseteq {\mathbb {N}}\). Therefore it suffices to show by induction on n that

$$ \forall n \in {\mathbb {N}}\, \forall g,g' \in X. n \in {\mathsf {dom}} \langle g \rangle \cap {\mathsf {dom}} \langle g' \rangle \rightarrow g(n) = g'(n) $$

If \(n=0\) then by (5), \(g(0) = g'(0) = t_i\). Assume that \(n>0\). Since \(n \in {\mathsf {dom}} \langle g \rangle \cap {\mathsf {dom}} \langle g' \rangle \) and since \( \mathsf {seqFin}[g] \wedge \mathsf {seqFin}[g'] \), \(n-1 \in {\mathsf {dom}} \langle g \rangle \cap {\mathsf {dom}} \langle g' \rangle \). By the induction hypothesis, \( g(n-1) = g'(n-1) \), hence by (5), \( g(n) = g'(n) = t_s\), and overall \(t_\mathsf {rec}\) is a function.

We prove now by induction on n that \( \forall n\in {\mathbb {N}}. n\in {\mathsf {dom}} \langle t_\mathsf {rec} \rangle \) (and hence \({\mathsf {dom}} \langle t_\mathsf {rec} \rangle ={\mathbb {N}}\)). Let \( g_0=\{\langle 0,t_i \rangle \} \). Since \( \varphi \{\emptyset /f,g_0/g\} \), it holds that \(g_0\in X\) and hence \(0 \in {\mathsf {dom}} \langle t_\mathsf {rec} \rangle \). Assume that \(n \in {\mathsf {dom}} \langle t_\mathsf {rec} \rangle \). Then there exists \(g \in X\) s.t. \(n \in {\mathsf {dom}} \langle g \rangle \). If \(n+1 \in {\mathsf {dom}} \langle g \rangle \) we are done. Otherwise, let \(g' :=g \cup \{\langle n+1 , t_s\langle n+1 , g(n) , \bar{x} \rangle \rangle \}\). Obviously \(\varphi \{g/f,g'/g\}\), hence \(g' \in X\), and hence \(n+1 \in {\mathsf {dom}} \langle g \rangle \) as desired.

Overall we proved (1) (\(t_\mathsf {rec}\) is a function with domain \({\mathbb {N}}\)). Proving (2) is done by (5) and a straightforward \({\mathsf {TC}}\)-induction.

Proof

(part of the proof of Proposition 2). We sketch the proof for \(\mathsf {cauchySeq}[a] \rightarrow \mathsf {converge}[a]\). So assume that \(\mathsf {cauchySeq}[a]\). It is straightforward to show that a is bounded. We prove that \( \mathsf {liminf}\langle a \rangle =\mathsf {limsup}\langle a \rangle \). It is straightforward to show that \( \mathsf {liminf}\langle a \rangle \subseteq \mathsf {limsup}\langle a \rangle \) (even without any assumption on a). Assume for contradiction that \(\exists q \in \mathsf {limsup}\langle a \rangle \setminus \mathsf {liminf}\langle a \rangle \). Since \(\mathsf {dedCut}[\mathsf {limsup}\langle a \rangle ]\) and \(\mathsf {dedCut}[\mathsf {liminf}\langle a \rangle ]\) it also holds that

$$\begin{aligned} \exists q,q',q'' \in {\mathbb {Q}}. q<q'<q'' \wedge q,q',q'' \in \mathsf {limsup}\langle a \rangle \setminus \mathsf {liminf}\langle a \rangle . \end{aligned}$$

Let \(\varepsilon = q''-q'\). Since \(\mathsf {cauchySeq}[a]\), there exists \(N \in {\mathbb {N}}\) s.t.

$$\begin{aligned} \forall m,k \ge N. |a(m)-a(k)| < \varepsilon . \end{aligned}$$
(6)

Since \(q' \notin \mathsf {liminf}\langle a \rangle \), there exists \(k' \ge N\) s.t. \( q' \notin a(k') \), and hence \(a(k') \le q < q'\). Since \(q'' \in \mathsf {limsup}\langle a \rangle \), there exists \(k'' \ge N\) s.t. \( q'' \in a(k'') \), and hence \(q'' < a(k'')\). Putting it together, it holds that

$$\begin{aligned} a(k')< q'< q'' < a(k'') \end{aligned}$$

Hence \( |a(k'')-a(k')| > q''-q' = \varepsilon \), that contradicts (6).

Proof

(proof of Proposition 3 ).

By Proposition 2-(1) it follows that \(\mathsf {converge}[a,\mathsf {limit}\langle a \rangle ]\). Since the term \(\mathsf {limit}\langle \cdot \rangle \) is a term of \(\mathcal{{L}}_\mathsf {PZF}\)), and since \(a \in \mathsf {U}\), by the \(\mathsf {U}\)-closure scheme it holds that \(\mathsf {limit}\langle a \rangle \in \mathsf {U}\). Hence not just \(\mathsf {dedCut}[\mathsf {limit}\langle a \rangle ]\) (Proposition 1), but also \(\mathsf {limit}\langle a \rangle \in {\mathbb {R}}\), and the claim follows.

1.1 A.1 Uniformly Convergence and Power Series

In this section we want to talk about sequences of (real) functions. We use the standard procedure of Currying. Define the following:

Definition 13

( \({\mathsf {PZF}^{\mathsf {U}}}\) )(sequence of functions).

  • \({\mathsf {seqFunc}}[F] :={\mathsf {func}} [F] \wedge {\mathsf {dom}} [F]={\mathbb {N}}\times {\mathbb {R}}\wedge {\mathsf {rng}} \langle F \rangle \subseteq {\mathbb {R}}\).

  • \({\mathsf {uniformlyConvergence}}[F,f] :={\mathsf {seqFunc}}[F] \wedge {\mathsf {func}} [f,{\mathbb {R}},{\mathbb {R}}] \wedge \forall \varepsilon \in {\mathbb {R}}^+ \, \exists N \in {\mathbb {N}}\, \forall x \in {\mathbb {R}}\, \forall n \ge N. |F(n,x)-f(x)| < \varepsilon \).

Proposition 6

(\({\mathsf {PZF}^{\mathsf {U}}}\)). Assume that \({\mathsf {uniformlyConvergence}}[F,f]\). Then:

  1. 1.

    \(\forall x \in {\mathbb {R}}. \mathsf {converge}[\lambda n \in {\mathbb {N}}. F(n,x),f(x)]\).

  2. 2.

    \(\forall x \in {\mathbb {R}}. \mathsf {limit}\langle \lambda n \in {\mathbb {N}}.F(n,x) \rangle = f(x)\).

Proof

  1. 1.

    Let \(x \in {\mathbb {R}}\). From \({\mathsf {uniformlyConvergence}}[F,f]\) it follows that \(\forall \varepsilon \in {\mathbb {R}}^+ \, \exists N \in {\mathbb {N}}\, \forall x \in {\mathbb {R}}\, \forall n \ge N. |F(n,x)-f(x)| < \varepsilon \). Hence \(\forall \varepsilon \in {\mathbb {R}}^+ \, \exists N \in {\mathbb {N}}\, \forall n \ge N. |F(n,x)-f(x)| < \varepsilon \), and hence \(\mathsf {converge}[\lambda n \in {\mathbb {N}}. F(n,x),f(x)]\) as desired.

  2. 2.

    It follows immediately from previous item and Proposition 2-(2).

Proposition 7

(\({\mathsf {PZF}^{\mathsf {U}}}\)). Assume that: \({\mathsf {uniformlyConvergence}}[F,f]\), \({\mathsf {Ufunc}}[F]\), and that \(\forall n \in {\mathbb {N}}. {\mathsf {continuous}}[\lambda x\in {\mathbb {R}}.F(n,x)]\). Then \({\mathsf {continuous}}[f]\).

Proof

For every \(x\in {\mathbb {R}}\), condition (3) of Definition 11 is proved in the usual way. It remains to prove that \({\mathsf {Ufunc}^{\mathbb {R}}}[f]\) holds. Since \({\mathsf {Ufunc}}[F]\), and since for every \(x \in {\mathbb {R}}\), \({\mathbb {N}}\times \{x\} \in \mathsf {U}\), it follows that \(F \upharpoonright {\mathbb {N}}\times \{x\} \in \mathsf {U}\) and hence for every \(x\in {\mathbb {R}}\),

$$\begin{aligned} \lambda n \in {\mathbb {N}}.F(n,x) = \lambda n \in {\mathbb {N}}.(F \upharpoonright {\mathbb {N}}\times \{x\})(n,x) \in \mathsf {U}. \end{aligned}$$
(7)

Let \(A \in {\mathsf {P}^{{\mathbb {R}}}}\). By Proposition 6-(2),

$$ f \upharpoonright A = \lambda x \in A.f(x) = \lambda x \in A. \mathsf {limit}\langle \lambda n \in {\mathbb {N}}.F(n,x) \rangle $$

and by Proposition 6-(1) for every \(x \in A\), the sequence \(\lambda n \in {\mathbb {N}}.F(n,x)\) converges. By (7), for every \(x \in A\), \( \lambda n \in {\mathbb {N}}.F(n,x) \in \mathsf {U}\), and since \(\mathsf {limit}\langle \cdot \rangle \) maps convergent sequences from \(\mathsf {U}\) to real numbers (in \(\mathsf {U}\)), we conclude that

$$ \lambda x \in A. \mathsf {limit}\langle \lambda n \in {\mathbb {N}}.F(n,x) \rangle \in \mathsf {U}$$

and the claim follows.

Remark 8

To ease notations, Definition 13 and hence Proposition 7 deal only with sequences of functions from \({\mathbb {R}}\) to \({\mathbb {R}}\). However, it can easily be extended to deal with sequences of functions from open segments to \({\mathbb {R}}\).

Definition 14

(\({\mathsf {PZF}^{\mathsf {U}}}\))(Series). Define the following term that maps sequences \(a \in \mathsf {U}\) such that \(\mathsf {converge}[\lambda n\in {\mathbb {N}}.\sum _{k=0}^{n} a(k)]\) to their sum:

$$ \mathsf {series}\langle a \rangle :=\mathsf {limit}\langle \lambda n\in {\mathbb {N}}.\sum _{k=0}^{n} a(k) \rangle .$$

We denote \( \mathsf {series}\langle a \rangle \) by the usual convention \(\sum _{k=0}^{\infty } a(k)\).

Proposition 8

( \({\mathsf {PZF}^{\mathsf {U}}}\) )(Power Series).

Let \(a \in \mathsf {U}\) be a sequence, and let \(c \in {\mathbb {R}}^+\). If \(\mathsf {converge}[\lambda n \in {\mathbb {N}}.|a(n)| \cdot c^n]\), then \(\forall x\in (-c,c). \mathsf {converge}[\lambda n\in {\mathbb {N}}.\sum _{k=0}^{n} a(k) \cdot x^k]\), and \(\lambda x \in (-c,c).\sum _{k=0}^{\infty } a(k) \cdot x^k \) is continuous (on \((-c,c)\)).

Proof

(proof of Proposition 8 ).

The proof that \(\forall x\in (-c,c). \mathsf {converge}[\lambda n\in {\mathbb {N}}.\sum _{k=0}^{n} a(k) \cdot x^k]\) is standard hence omitted. Define the functions \(f :=\lambda x \in (-c,c).\sum _{k=0}^{\infty } a(k) \cdot x^k\), and \( F = \lambda n \in {\mathbb {N}}, \lambda x \in (-c,c).\sum _{k=0}^{n} a(k) \cdot x^k \). We wish to apply Proposition 7 to F and f, and conclude that \({\mathsf {continuous}}[f]\).

The proof for \({\mathsf {uniformlyConvergence}}[F,f]\) is also standard and omitted. By Proposition 5 and straightforward induction, it holds that

$$ \forall n\in {\mathbb {N}}. {\mathsf {continuous}}[\lambda x \in (-c,c).\sum _{k=0}^{n} a(k) \cdot x^k]. $$

It remains to prove that \({\mathsf {Ufunc}}[F]\). Let \(X \in \mathsf {U}\) s.t. \(X \subseteq {\mathbb {N}}\times {\mathbb {R}}\). By the closure properties of \(\mathsf {U}\), it is obvious that \(\big (\lambda \langle n,r \rangle \in X. \sum _{k=0}^{n} a(k) \cdot x^k \big ) \in \mathsf {U}\), and the claim follows.

Corollary 2

(\({\mathsf {PZF}^{\mathsf {U}}}\)). Let \(a \in \mathsf {U}\) be a sequence of rational numbers. If for every \(c \in {\mathbb {R}}^+\), \(\mathsf {converge}[\lambda n \in {\mathbb {N}}.|a(n)| \cdot c^n]\), then \(\forall x\in {\mathbb {R}}. \mathsf {converge}[\lambda n\in {\mathbb {N}}.\sum _{k=0}^{n} a(k) \cdot x^k]\), and \(\lambda x \in {\mathbb {R}}.\sum _{k=0}^{\infty } a(k) \cdot x^k \) is continuous (on \({\mathbb {R}}\)).

Proof

It is straightforward from previous proposition.

1.2 A.2 Elementary Functions

Define the following sequence:

$$ a^{\sin } = \lambda n\in {\mathbb {N}}. \left\{ \begin{array}{@{}ll} \frac{1}{n!} &{} \text { if } n \equiv 1 \pmod 4 \\ -\frac{1}{n!} &{} \text { if } n \equiv 3 \pmod 4 \\ 0 &{} \text { else } \\ \end{array} \right. $$

It is straightforward to show that for every \(c \in {\mathbb {R}}^+\), \(\mathsf {converge}[\lambda n \in {\mathbb {N}}.|a^{\sin }(n)| \cdot c^n]\). Hence by Corollary 2 the following function is continuous:

$$ \sin = \lambda x \in {\mathbb {R}}. \sum _{k=0}^{\infty } a^{\sin }(k) \cdot x^k $$

Similarly we can define the other trigonometric functions, the inverse trigonometric functions, the hyperbolic/inverse hyperbolic functions, the exponentiation, and the logarithmic functions. Using Corollary 2 or Proposition 8, we can then prove that those functions are continuous. (Note that not all of these functions have domain \({\mathbb {R}}\).) Next, we define the elementary functions to be all the functions obtained by adding, subtracting, multiplying, dividing, and composing any of the previously mentioned functions. By Proposition 5, we conclude that every elementary function is a continuous function.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Levi, N., Avron, A. (2021). Analysis in a Formal Predicative Set Theory. In: Silva, A., Wassermann, R., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2021. Lecture Notes in Computer Science(), vol 13038. Springer, Cham. https://doi.org/10.1007/978-3-030-88853-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88853-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88852-7

  • Online ISBN: 978-3-030-88853-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics