Skip to main content

Optogenetics

  • Reference work entry
  • First Online:
Neuroscience in the 21st Century

Abstract

As its name implies, optogenetics comprises a technological platform consisting of development and a combined implementation of optical and genetic methods for studying neural contributions to behavior. Since its inception a decade ago, it has rapidly grown to become a popular and robust technology, leading to many novel findings that have advanced our knowledge regarding the neurobiological basis of behavior and illuminated important roles for brain circuits and their activity in a number of disease states. Nevertheless, these first decade contributions reflect the “tip of the iceberg,” with optogenetics and its applications poised to produce more significant future advances in neuroscience research, and perhaps even in development of optogenetic-based technologies for human disease therapeutics. This chapter will provide a brief historical background of optogenetics, followed by a narrative on the technology and a review of influential discoveries that have emerged from its application. Finally, a commentary regarding the future of optogenetics in relation to technological innovations, extending its utility to advance basic neuroscience research, and its potential implementation to brain disease therapeutics will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamantidis AR et al (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450(7168):420–424

    Article  CAS  Google Scholar 

  • Airan RD et al (2009) Temporally precise in vivo control of intracellular signalling. Nature 458(7241):1025–1029

    Article  CAS  Google Scholar 

  • Allen BD et al (2015) Principles of designing interpretable optogenetic behavior experiments. Learn Mem 22(4):232–238

    Article  Google Scholar 

  • Aravanis AM et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4(3):S143–S156

    Article  Google Scholar 

  • Arenkiel BR et al (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54(2):205–218

    Article  CAS  Google Scholar 

  • Banghart M et al (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7(12):1381–1386

    Article  CAS  Google Scholar 

  • Beyeler A et al (2014) Deciphering memory function with optogenetics. Prog Mol Biol Transl Sci 122:341–390

    Article  CAS  Google Scholar 

  • Boyden ES (2015) Optogenetics and the future of neuroscience. Nat Neurosci 18(9):1200–1201

    Article  CAS  Google Scholar 

  • Boyden ES et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  CAS  Google Scholar 

  • Britt JP, Bonci A (2013) Optogenetic interrogations of the neural circuits underlying addiction. Curr Opin Neurobiol 23(4):539–545

    Article  CAS  Google Scholar 

  • Chen BT et al (2013) Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496(7445):359–362

    Article  CAS  Google Scholar 

  • Chow BY et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277):98–102

    Article  CAS  Google Scholar 

  • Deisseroth K (2011) Optogenetics. Nat Methods 8(1):26–29

    Article  CAS  Google Scholar 

  • Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18(9):1213–1225

    Article  CAS  Google Scholar 

  • Deisseroth K et al (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26(41):10380–10386

    Article  CAS  Google Scholar 

  • Desai M et al (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 105(3):1393–1405

    Article  CAS  Google Scholar 

  • Dufour S, De Koninck Y (2015) Optrodes for combined optogenetics and electrophysiology in live animals. Neurophotonics 2(3):031205

    Article  Google Scholar 

  • Fork RL (1971) Laser stimulation of nerve cells in Aplysia. Science 171(3974):907–908

    Article  CAS  Google Scholar 

  • Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2(3):e299

    Article  Google Scholar 

  • Ikemoto S, Bonci A (2014) Neurocircuitry of drug reward. Neuropharmacology 76(Pt B):329–341

    Article  CAS  Google Scholar 

  • Kato HE et al (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482(7385):369–374

    Article  CAS  Google Scholar 

  • Kim TI et al (2013) Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340(6129):211–216

    Article  CAS  Google Scholar 

  • Kolodziej A et al (2014) SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice. Neuroimage 103:171–180

    Article  Google Scholar 

  • Lee JH et al (2010) Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465(7299):788–792

    Article  CAS  Google Scholar 

  • Lima SQ, Miesenbock G (2005) Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121(1):141–152

    Article  CAS  Google Scholar 

  • Lu Y et al (2015) Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex. J Neurophysiol 113(10):3574–3587

    Article  Google Scholar 

  • Muller K et al (2015) Optogenetics for gene expression in mammalian cells. Biol Chem 396(2):145–152

    Article  Google Scholar 

  • Nagel G et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100(24):13940–13945

    Article  CAS  Google Scholar 

  • Nagel G et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15(24):2279–2284

    Article  CAS  Google Scholar 

  • Petreanu L et al (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10(5):663–668

    Article  CAS  Google Scholar 

  • Roberts TF et al (2012) Motor circuits are required to encode a sensory model for imitative learning. Nat Neurosci 15(10):1454–1459

    Article  CAS  Google Scholar 

  • Sharma P, Pienaar IS (2014) Pharmacogenetic and optical dissection for mechanistic understanding of Parkinson’s disease: potential utilities revealed through behavioural assessment. Neurosci Biobehav Rev 47:87–100

    Article  Google Scholar 

  • Steinberg EE et al (2015) Illuminating circuitry relevant to psychiatric disorders with optogenetics. Curr Opin Neurobiol 30:9–16

    Article  CAS  Google Scholar 

  • Thanos PK et al (2013) Mapping brain metabolic connectivity in awake rats with muPET and optogenetic stimulation. J Neurosci 33(15):6343–6349

    Article  CAS  Google Scholar 

  • Wang H et al (2007) High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci U S A 104(19):8143–8148

    Article  CAS  Google Scholar 

  • Zemelman BV et al (2002) Selective photostimulation of genetically chARGed neurons. Neuron 33(1):15–22

    Article  CAS  Google Scholar 

  • Zhang F et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633–639

    Article  CAS  Google Scholar 

  • Zhao M et al (2015) Optogenetic tools for modulating and probing the epileptic network. Epilepsy Res 116:15–26

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Michaelides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media New York (outside the USA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Michaelides, M., Bonci, A. (2022). Optogenetics. In: Pfaff, D.W., Volkow, N.D., Rubenstein, J.L. (eds) Neuroscience in the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-030-88832-9_172

Download citation

Publish with us

Policies and ethics