Skip to main content

Diversity and Endemism of the Marsupials of Australia’s Arid Zone

  • Living reference work entry
  • First Online:
American and Australasian Marsupials

Abstract

The arid and semiarid regions of Australia encompass about three quarters of the continent. This vast area – the arid zone – is characterized by very varied habitats and landscapes and inter-annual extremes of rainfall that drive dramatic shifts in primary productivity. Arid zone marsupials use morphological, behavioral, and physiological adaptations to avoid the climatic extremes and reduce the effects of fluctuating food, water, and shelter resources. Most of the small to midsized species shelter underground or in depressions on the soil surface, are nocturnal, and can enter torpor. Larger species such as kangaroos seek shade by day. About 64 extant species of marsupial occur in the arid zone of which 46 species are endemic or near endemic to this region, 12 more are peripheral inhabitants, and 6 have distributions that intrude marginally into the arid zone. Dasyurid marsupials are most strongly represented in arid Australia (25 species, 15 endemic), achieving highest species richness in the extensive hummock grassland biome where up to 8 species can co-occur. Diprotodontians are represented by 28 species in the arid zone, but only 7 are endemic. Three peramelemorphians and two notoryctemorphians also occur. A further 17 species occupied arid Australia at the time of European colonization but are now either regionally (5 species) or globally (12 species) extinct. These losses are of ecological, economic, and cultural importance. Although some of the causes of species extinction still operate, targeted and broad-scale conservation efforts are being made to reduce further losses of species in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott I (2006) Mammalian faunal collapse in Western Australia, 1875–1925: the hypothesised role of epizootic disease and a conceptual model of its origin, introduction, transmission, and spread. Aust Zool 33(4):530–561

    Article  Google Scholar 

  • Aplin KP, Brown PR, Jacob J et al (2003) Field methods for rodent studies in Asia and the Indo-Pacific. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Arthington AH, Balcombe SR (2011) Extreme flow variability and the ‘boom and bust’ ecology of fish in arid-zone floodplain rivers: a case history with implications for environmental flows, conservation and management. Ecohydrology 4:708–720

    Article  Google Scholar 

  • Australian Government (2022) Indigenous Protected Areas. Department of Climate Change, Energy. The Environment and Water. https://www.dcceew.gov.au/environment/land/indigenous-protected-areas. Accessed 20 Nov 2022

  • Baker A, Dickman C (2018) Secret lives of carnivorous marsupials. CSIRO Publishing, Melbourne

    Book  Google Scholar 

  • Barnes JC, Sanders MG, Burnett SE (2023) Optimising camera trap surveys for the Carpentarian pseudantechinus (Pseudantechinus mimulus) in Northwest Queensland. Austral Ecol in press

    Google Scholar 

  • Baynes A (1990) The mammals of Shark Bay, Western Australia. In: Berry PF, Bradshaw SD, Wilson BR (eds) Research in Shark Bay: report of the France-Australe bicentenary expedition committee. Western Australian Museum, Perth, pp 313–325

    Google Scholar 

  • Benshemesh J (2014) Backfilled tunnels provide a novel and efficient method of revealing an elusive Australian burrowing mammal. J Mammal 95:1054–1063

    Article  Google Scholar 

  • Burbidge AA, McKenzie NL (1989) Patterns in the modern decline of Western Australia's vertebrate fauna: causes and conservation implications. Biol Conserv 50:143–198

    Article  Google Scholar 

  • Burbidge AA, Johnson KA, Fuller PJ et al (1988) Aboriginal knowledge of the mammals of the central deserts of Australia. Aust Wildl Res 15:9–39

    Article  Google Scholar 

  • Byrne M, Yeates DK, Joseph L et al (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol Ecol 17:4398–4417

    Article  CAS  PubMed  Google Scholar 

  • Christensen P, Leftwich T (1980) Observations on the nest-building habits of the brushtailed rat-kangaroo or woylie (Bettongia penicillata). J Roy Soc West Aust 63(2):33–38

    Google Scholar 

  • Clayton JA, Pavey CR, Vernes K et al (2015) Diet of mala (Lagorchestes hirsutus) at Uluru - Kata Tjuta National Park and comparison with that of historic free-ranging mala in the Tanami Desert: implications for management and future reintroductions. Aust Mammal 37:201–211

    Article  Google Scholar 

  • Cremona T, Baker AM, Cooper SJB et al (2020) Integrative taxonomic investigation of Petaurus breviceps (Marsupialia: Petauridae) reveals three distinct species. Zool J Linnean Soc 191(2):503–527

    Google Scholar 

  • Cresswell ID, Murphy HT (2017) Australia state of the environment 2016: biodiversity. Australian Government Department of the Environment and Energy, Canberra

    Google Scholar 

  • CSIRO and BOM (Commonwealth Scientific and Industrial Research Organisation and The Bureau of Meteorology) (2020) The state of the climate 2020. https://wwwclimatechangeinaustraliagovau/en/projections-tools/regional-climate-change-explorer/sub-clusters/. Accessed 26 May 2022

  • Davies NA, Gramotnev G, McAlpine C et al (2013) Physiological stress in koala populations near the arid edge of their distribution. PLoS One 8(11):e79136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson WR, Bennett AF (1978) Energy metabolism and thermoregulation of the spectacled hare wallaby (Lagorchestes conspicillatus). Physiol Zool 51(2):114–130

    Article  Google Scholar 

  • Dickman CR (1984) Competition and coexistence among the small marsupials of Australia and New Guinea. Acta Zool Fennica 172:27–31

    Google Scholar 

  • Dickman CR (2003) Distributional ecology of dasyurid marsupials. In: Jones ME, Dickman CR, Archer M (eds) Predators with pouches: the biology of carnivorous marsupials. CSIRO Publishing, Melbourne, pp 318–331

    Google Scholar 

  • Dickman CR (2006) Species interactions: indirect effects. In: Attiwill P, Wilson BA (eds) Ecology: an Australian perspective, 2nd edn. Oxford University Press, Oxford, pp 303–316

    Google Scholar 

  • Dickman CR (2007) A fragile balance: the extraordinary story of Australian marsupials. Mallon Publishing, Melbourne

    Google Scholar 

  • Dickman CR, Pressey RL, Lim L et al (1993) Mammals of particular conservation concern in the Western division of New South Wales. Biol Conserv 65:219–248

    Article  Google Scholar 

  • Dickman CR, Wardle GM, Foulkes J et al (2014) Desert complex environments. In: Lindenmayer D, Burns E, Thurgate N et al (eds) Biodiversity and environmental change: monitoring, challenges and direction. CSIRO Publishing, Melbourne, pp 379–438

    Google Scholar 

  • Dickman CR, Greenville AC, Wardle GM (2017) Developing the desert – potential effects on wildlife. In: Kingsford RT (ed) Lake Eyre Basin rivers: environmental, social and economic importance. CSIRO Publishing, Melbourne, pp 63–74

    Google Scholar 

  • Dickman CR, Greenville AC, Wardle GM et al (2020) Class conflict: diffuse competition between mammalian and reptilian carnivores. Diversity 12:355

    Article  CAS  Google Scholar 

  • Doherty TS, Geary WL, Miritis V et al (2023) Multiple threats affecting Australasian marsupials: impacts and management. In: Cáceres NC, Dickman CR (eds) American and Australasian marsupials: an evolutionary, biogeographical, and ecological approach. Springer, Cham

    Google Scholar 

  • Eldridge DJ, Rath D (2002) Hip holes: kangaroo (Macropus spp.) resting sites modify the physical and chemical environment of woodland soils. Austral Ecol 27:527–536

    Article  Google Scholar 

  • Eldridge MDB, Beck RMD, Croft DA et al (2019) An emerging consensus in the evolution, phylogeny and systematics of marsupials and their fossil relatives (Metatheria). J Mammal 100(3):802–837

    Article  Google Scholar 

  • Fujioka T, Chappell J (2010) History of Australian aridity: chronology in the evolution of arid landscapes in: Bishop P, Pillans B (eds) Australian landscapes. Geol Soc Lond, Spec Publ 346:121–139

    Google Scholar 

  • Fujioka T, Chappell J, Honda M et al (2005) Global cooling initiated stony deserts in central Australia 2–4 Ma, dated by cosmogenic 21Ne-10Be. Geology 33:993–996

    Article  CAS  Google Scholar 

  • Fujioka T, Chappell J, Fifield K et al (2009) Australian desert dune fields initiated with Pliocene–Pleistocene global climatic shift. Geology 37(1):51–54

    Article  CAS  Google Scholar 

  • Garland T, Geiser F, Baudinette RV (1988) Comparative locomotor performance of marsupial and placental mammals. J Zool (Lond) 215:505–522

    Article  Google Scholar 

  • Geiser F (2004) The role of torpor in the life of Australian arid zone mammals. Aust Mammal 26:125–134

    Article  Google Scholar 

  • Geiser F (2021) Ecological physiology of daily torpor and hibernation. Springer, Switzerland

    Book  Google Scholar 

  • Geiser F, Cooper CE (2023) Daily torpor, hibernation, and heterothermy in marsupials. In: Cáceres NC, Dickman CR (eds) American and Australasian marsupials: an evolutionary, biogeographical, and ecological approach. Springer, Cham

    Google Scholar 

  • Geiser F, Pavey CR (2007) Basking and torpor in a rock-dwelling desert marsupial: survival strategies in a resource-poor environment. J Comp Physiol B 177:885–892

    Article  PubMed  Google Scholar 

  • Geiser F, Goodship N, Pavey CR (2002) Was basking important in the evolution of mammalian endothermy? Naturwissenschaften 89:412–414

    Article  CAS  PubMed  Google Scholar 

  • Greenville AC, Brandle R, Canty P et al (2018) Dynamics, habitat use and extinction risk of a carnivorous desert marsupial. J Zool 306:258–267

    Article  Google Scholar 

  • Hayward MW, Poh ASL, Cathcart J et al (2015) Numbat nirvana: conservation ecology of the endangered numbat (Myrmecobius fasciatus) (Marsupialia: Myrmecobiidae) reintroduced to Scotia and Yookamurra sanctuaries, Australia. Aust J Zool 63:258–269

    Article  Google Scholar 

  • James D (2015) Tjukurpa time. In: McGrath A, Jebb MA (eds) Long history, deep time: deepening histories of place. ANU Press and Aboriginal History Inc, Canberra, pp 33–45

    Google Scholar 

  • Jensen MA, Paton DC, Moseby KE (2021) Delayed release improves site fidelity but has little effect on survival or breeding success of reintroduced western quolls (Dasyurus geoffroii). Austral Ecol 46:1298–1310

    Article  Google Scholar 

  • Johnson C (2006) Australia’s mammal extinctions: a 50 000 year history. Cambridge University Press, Cambridge

    Google Scholar 

  • Keith DA (2017) Australian vegetation, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kerle A (2001) Possums: the brushtails, ringtails and greater glider. University of New South Wales Press, Sydney

    Google Scholar 

  • Kingsford RT, Walburn AJD (2022) Oil and gas exploration in the Lake Eyre Basin: distribution and consequences for rivers and wetlands, including the Coongie Lakes Ramsar Site. Mar Fresh Res. https://doi.org/10.1071/MF22063

  • Kingsley L, Goldizen A, Fisher DO (2012) Establishment of an endangered species on a private nature refuge: what can we learn from reintroductions of the bridled nailtail wallaby Onychogalea fraenata? Oryx 46:240–248

    Article  Google Scholar 

  • Körtner G, Pavey CR, Geiser F (2008) Thermal biology, torpor and activity in free-living mulgaras in arid zone Australia during the winter reproductive season. Physiol Biochem Zool 81:442–451

    Article  PubMed  Google Scholar 

  • Körtner G, Rojas AD, Geiser F (2010) Thermal biology, torpor use and activity patterns of a small diurnal marsupial from a tropical desert: sexual differences. J Comp Physiol B 180:869–876

    Article  PubMed  Google Scholar 

  • Langaliki R, Kuntjupai R, Camerlenghi E et al (2022) How dreaming and indigenous ancestral stories are central to nature conservation: perspectives from Walalkara indigenous protected area, Australia. Ecol Mgmt Restor 23(S1):43–52

    Article  Google Scholar 

  • Legge S, Hayward M, Weeks A (2023) Novel conservation strategies to conserve Australian marsupials. In: Cáceres NC, Dickman CR (eds) American and Australasian marsupials: an evolutionary, biogeographical, and ecological approach. Springer, Cham

    Google Scholar 

  • Long J, Archer M, Flannery T et al (2002) Prehistoric mammals of Australia and New Guinea: one hundred million years of evolution. University of New South Wales Press, Sydney

    Google Scholar 

  • Mabutt JA (1977) Desert landforms. Australian National University Press, Canberra

    Google Scholar 

  • Marlow BJ (1969) A comparison of the locomotion of two desert-living Australian mammals, Antechinomys spenceri (Marsupialia: Dasyuridae) and Notomys cervinus (Rodentia: Muridae). J Zool (Lond) 157:159–167

    Article  Google Scholar 

  • Marsh CJ, Sica YV, Burgin CJ et al (2022) Expert range maps of global mammal distributions harmonised to three taxonomic authorities. J Biogeogr 49:979–992

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald PJ, Jobson P, Köhler F et al (2021) The living heart: climate gradients predict desert mountain endemism. Ecol Evol 11(9):4366–4378

    Article  PubMed  PubMed Central  Google Scholar 

  • McDowell MC, Haouchar D, Aplin KP et al (2015) Morphological and molecular evidence supports specific recognition of the recently extinct Bettongia anhydra (Marsupialia: Macropodidae). J Mammal 96(2):287–296

    Article  Google Scholar 

  • McKay GM (1989) Family Petauridae. In: Walton DW, Richardson BJ (eds) Fauna of Australia. Mammalia. Australian Government Publishing Service, Canberra, pp 665–678

    Google Scholar 

  • McLean AL, Cooper SJB, Lancaster ML et al (2018) Small marsupial, big dispersal? Broad- and fine-scale genetic structure of an endangered marsupial from the Australian arid zone. Aust J Zool 66:214–227

    Article  Google Scholar 

  • Morton S (2022) Australian deserts: ecology and landscapes. CSIRO Publishing, Melbourne

    Book  Google Scholar 

  • Morton SR, Stafford Smith DM, Dickman CR et al (2011) A fresh framework for the ecology of arid Australia. J Arid Environ 75:313–329

    Article  Google Scholar 

  • Moseby KE, Hodgens P, Peacock D et al (2021) Intensive monitoring, the key to identifying cat predations as a major threat to native carnivore (Dasyurus geoffroii) reintroduction. Biol Conserv 30:1547–1571

    Google Scholar 

  • Newsome AE, Newsome TM (2016) The red kangaroo in Central Australia: an early account by A. E. Newsome. CSIRO Publishing, Melbourne

    Book  Google Scholar 

  • Pavey CR (2014) Australian rangelands and climate change – Native species. Ninti One Limited and CSIRO, Alice Springs http://www.nintione.com.au/resource/AustralianRangelandsAndClimateChange_NativeSpecies.pdf. Accessed 10 July 2022

  • Pavey CR, Geiser F (2008) Basking and diurnal foraging in the dasyurid marsupial Pseudantechinus macdonnellensis. Aust J Zool 56:129–135

    Article  Google Scholar 

  • Pavey CR, Eldridge SR, Heywood M (2008) Population dynamics and prey selection of native and introduced predators during a rodent outbreak in arid Australia. J Mammal 89:674–683

    Article  Google Scholar 

  • Pavey CR, Addison J, Brandle R et al (2017) The role of refuges in the persistence of Australian dryland mammals. Biol Rev 92:647–664

    Article  PubMed  Google Scholar 

  • Pianka ER (1986) Ecology and natural history of desert lizards. Princeton University Press, Princeton

    Book  Google Scholar 

  • Potter TI, Greenville AC, Dickman CR (2018) Assessing the potential for intraguild predation among taxonomically disparate micro-carnivores: marsupials and arthropods. Roy Soc Open Sci 5:171872

    Article  Google Scholar 

  • Ride WDL (1965) Locomotion in the Australian marsupial Antechinomys. Nature 205:199

    Article  CAS  PubMed  Google Scholar 

  • Rolls EC (1969) They all ran wild: the story of pests on the land in Australia. Angus and Robertson, Sydney

    Google Scholar 

  • Samuel G (2020) Independent review of the EPBC Act – final report. Australian Government Department of Agriculture, Water and the Environment, Canberra

    Google Scholar 

  • Shaw RD, Etheridge MA, Lambeck K et al (1991) Development of the Late Proterozoic to Mid-Paleozoic, intracratonic Amadeus Basin in Central Australia: a key to understanding tectonic forces in plate interiors. Tectonics 10:688–721

    Article  Google Scholar 

  • Spencer WB, Gillen FJ (1899) The native tribes of Central Australia, vol 28. Macmillan, London, p 330

    Google Scholar 

  • Stobo-Wilson AM, Murphy BP, Legge SM et al (2022) Counting the bodies: estimating the numbers and spatial variation of Australian reptiles, birds and mammals killed by two invasive mesopredators. Div Distrib 28:976–991

    Article  Google Scholar 

  • Sutton P, Walshe K (2021) Farmers or hunter-gatherers? The Dark Emu debate. Melbourne University Press, Melbourne

    Google Scholar 

  • Trewin B (2006) Climatic aspects of Australia’s deserts. In: Trewin D (ed) 2006 year book Australia. Australian Bureau of Statistics, Canberra, pp 2–10

    Google Scholar 

  • Van Dyck SM, Strahan R (eds) (2008) The mammals of Australia, 3rd edn. Reed New Holland, Sydney

    Google Scholar 

  • Van Dyck SM, Gynther I, Baker A (eds) (2011) Field companion to the mammals of Australia. Reed New Holland, Sydney

    Google Scholar 

  • van Etten EJB (2009) Inter-annual rainfall variability of arid Australia: greater than elsewhere? Aust Geographer 40:109–120

    Article  Google Scholar 

  • Wardle GM, Pavey CR, Dickman CR (2013) The greening of arid Australia: new insights from extreme years. Austral Ecol 38:731–740

    Article  Google Scholar 

  • Warner TT (2004) Desert meterology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Williams MAJ (2000) Quaternary Australia: extremes in the last glacial-interglacial cycle. In: Veevers JJ (ed) Billion-year earth history of Australia and neighbours in Gondwanaland. GEMOC Press, Sydney, pp 55–59

    Google Scholar 

  • Willmer P, Stone G, Johnston I (2004) Environmental physiology of animals, 2nd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  • Withers PC, Cooper CE (2023) Energy and water balance in marsupials. In: Cáceres NC, Dickman CR (eds) American and Australasian marsupials: an evolutionary, biogeographical, and ecological approach. Springer, Cham

    Google Scholar 

  • Withers PC, Thompson GG, Seymour RS (2000) Metabolic physiology of the north-western marsupial mole, Notoryctes caurinus (Marsupialia: Notoryctidae). Aust J Zool 48:241–258

    Article  Google Scholar 

  • Woinarski JCZ, Fisher DO (2023) Conservation biogeography of Australasian marsupials. In: Cáceres NC, Dickman CR (eds) American and Australasian marsupials: an evolutionary, biogeographical, and ecological approach. Springer, Cham

    Google Scholar 

  • World Wide Fund for Nature (2022) Restore the Yorke: Marna Banggara. https://www.forgau/what-we-do/rewild-the-yorke. Accessed 10 Nov 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris R. Dickman .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Crown

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dickman, C.R., Pavey, C.R. (2023). Diversity and Endemism of the Marsupials of Australia’s Arid Zone. In: Cáceres, N.C., Dickman, C.R. (eds) American and Australasian Marsupials. Springer, Cham. https://doi.org/10.1007/978-3-030-88800-8_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88800-8_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88800-8

  • Online ISBN: 978-3-030-88800-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics