Skip to main content

Deciding FO-definability of Regular Languages

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMiCS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13027))

  • 472 Accesses

Abstract

We prove that, similarly to known \(\textsc {PSpace}\)-completeness of recognising \(\mathsf {FO}(<)\)-definability of the language \({\boldsymbol{L}}(\mathfrak A)\) of a DFA \(\mathfrak A\), deciding both \(\mathsf {FO}(<,\equiv )\)- and \(\mathsf {FO}(<,\mathsf {MOD})\)-definability (corresponding to circuit complexity in \({\textsc {AC}^0}\) and \({\textsc {ACC}^0}\)) are \(\textsc {PSpace}\)-complete. We obtain these results by first showing that known algebraic characterisations of FO-definability of \({\boldsymbol{L}}(\mathfrak A)\) can be captured by ‘localisable’ properties of the transition monoid of \(\mathfrak A\). Using our criterion, we then generalise the known proof of \(\textsc {PSpace}\)-hardness of \(\mathsf {FO}(<)\)-definability, and establish the upper bounds not only for arbitrary DFAs but also for 2NFAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artale, A., et al.: Ontology-mediated query answering over temporal data: a survey. In: Schewe, S., Schneider, T., Wijsen, J. (eds.) TIME, vol. 90, pp. 1–37 (2017)

    Google Scholar 

  2. Artale, A., et al.: First-order rewritability of ontology-mediated queries in linear temporal logic. Artif. Intell. 299, 103536 (2021)

    Article  MathSciNet  Google Scholar 

  3. Barrington, D.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC\({^1}\). J. Comput. Syst. Sci. 38(1), 150–164 (1989)

    Article  MathSciNet  Google Scholar 

  4. Barrington, D., Compton, K., Straubing, H., Thérien, D.: Regular languages in NC\({^1}\). J. Comput. Syst. Sci. 44(3), 478–499 (1992)

    Article  MathSciNet  Google Scholar 

  5. Beaudry, M., McKenzie, P., Thérien, D.: The membership problem in aperiodic transformation monoids. J. ACM 39(3), 599–616 (1992)

    Article  MathSciNet  Google Scholar 

  6. Bennett, M., Martin, G., O’Bryant, K., Rechnitzer, A.: Explicit bounds for primes in arithmetic progressions. Illinois J. of Math. 62(1–4), 427–532 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Bernátsky, L.: Regular expression star-freeness is PSPACE-complete. Acta Cybern. 13(1), 1–21 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik und Grundlagen der Math. 6(1–6), 66–92 (1960)

    Article  MathSciNet  Google Scholar 

  9. Carton, O., Dartois, L.: Aperiodic two-way transducers and fo-transductions. In: Kreutzer, S. (ed.) CSL 2015, vol. 41 pp. 160–174 (2015)

    Google Scholar 

  10. Cho, S., Huynh, D.: Finite-automaton aperiodicity is PSPACE-complete. Theor. Comp. Sci. 88(1), 99–116 (1991)

    Article  MathSciNet  Google Scholar 

  11. Compton, K., Laflamme, C.: An algebra and a logic for NC\({^1}\). Inf. Comput. 87(1/2), 240–262 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Elgot, C.: Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc. 98, 21–51 (1961)

    Article  MathSciNet  Google Scholar 

  13. Fleischer, L., Kufleitner, M.: The intersection problem for finite monoids. In: Niedermeier, R., Vallée, B. (eds.) STACS 2018, vol. 96, pp. 1–14 (2018)

    Google Scholar 

  14. Holzer, M., König, B.: Regular languages, sizes of syntactic monoids, graph colouring, state complexity results, and how these topics are related to each other. Bull. EATCS 38, 139–155 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Jukna, S.: Boolean Function Complexity. Advances and Frontiers, vol. 27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24508-4

  16. Kaplan, G., Levy, D.: Solvability of finite groups via conditions on products of 2-elements and odd p-elements. Bull. Austr. Math. Soc. 82(2), 265–273 (2010)

    Article  MathSciNet  Google Scholar 

  17. King, O.: The subgroup structure of finite classical groups in terms of geometric configurations. In: Webb, B. (ed.) Surveys in Combinatorics, Society Lecture Note Series, vol. 327, pp. 29–56. Cambridge University Press (2005)

    Google Scholar 

  18. Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of FOCS 1977, pp. 254–266. IEEE Computer Society Press (1977)

    Google Scholar 

  19. McNaughton, R., Papert, S.: Counter-free automata. The MIT Press, Cambridge (1971)

    MATH  Google Scholar 

  20. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Seman. 10, 133–173 (2008)

    MATH  Google Scholar 

  21. Rotman, J.: An introduction to the theory of groups. Springer-Verlag, New York (1999). https://doi.org/10.1007/978-1-4612-4176-8

    Book  Google Scholar 

  22. Ryzhikov, V., Savateev, Y., Zakharyaschev, M.: Deciding FO-rewritability of ontology-mediated queries in linear temporal logic. In: Combi, C., Eder, J., Reynolds, M. (eds.) TIME 2021, LIPIcs, pp. 6:1–7:15 (2021)

    Google Scholar 

  23. Schützenberger, M.: On finite monoids having only trivial subgroups. Inf. Control 8(2), 190–194 (1965)

    Article  MathSciNet  Google Scholar 

  24. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM J. Res. Dev. 3(2), 198–200 (1959)

    Article  MathSciNet  Google Scholar 

  25. Stern, J.: Complexity of some problems from the theory of automata. Inf. Control 66(3), 163–176 (1985)

    Article  MathSciNet  Google Scholar 

  26. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser Verlag, Basel (1994)

    Book  Google Scholar 

  27. Thompson, J.: Nonsolvable finite groups all of whose local subgroups are solvable. Bull. Amer. Math. Soc. 74(3), 383–437 (1968)

    Google Scholar 

  28. Trakhtenbrot, B.: Finite automata and the logic of one-place predicates. Siberian Math. J. 3, 103–131 (1962)

    MathSciNet  MATH  Google Scholar 

  29. Vardi, M.: A note on the reduction of two-way automata to one-way atuomata. Inf. Process. Lett. 30(5), 261–264 (1989)

    Article  Google Scholar 

  30. Xiao, G., et al.: Ontology-based data access: a survey. In: Lang, J. (ed.) Proceedings of IJCAI 2018, pp. 5511–5519 (2018). ijcai.org

    Google Scholar 

Download references

Acknowledgements

This work was supported by UK EPSRC EP/S032282.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Ryzhikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kurucz, A., Ryzhikov, V., Savateev, Y., Zakharyaschev, M. (2021). Deciding FO-definability of Regular Languages. In: Fahrenberg, U., Gehrke, M., Santocanale, L., Winter, M. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2021. Lecture Notes in Computer Science(), vol 13027. Springer, Cham. https://doi.org/10.1007/978-3-030-88701-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88701-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88700-1

  • Online ISBN: 978-3-030-88701-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics