Skip to main content

Current Advances in Celiac Disease: Consequences and Improvement Strategies

  • Chapter
  • First Online:
Challenges and Potential Solutions in Gluten Free Product Development

Part of the book series: Food Engineering Series ((FSES))

  • 436 Accesses

Abstract

Celiac is a chronic enteric disease resulted from an abnormal immune response to gluten proteins in patients having a certain genomic constitution. Tissue transglutaminase enzyme 2 converts the glutamine residues of gluten peptides by deamidation reaction into glutamic acid, which binds to human leukocyte antigen (HLA)-DQ2 or -DQ8 molecules and subsequently evokes T cell responses leading to small intestine inflammation. These events lead to the typical symptoms associated with celiac disease. Also, wheat proteins are rich in proline content and are resistant to human pancreatic and gastric enzymes. Different peptidases from microbial and fungal sources can degrade these incompletely digested peptides. While following a gluten-free diet is the best preventive strategy, a combination therapy by using proteases or carboxypeptidases from microbial sources for gluten detoxification or treatment with tissue transglutaminase inhibitors may also be a good option. Intestinal epithelial cell lines (Caco-2) may be used as in vitro model to study trans/paracellular permeability, distortion of intercellular tight junction protein viz., occludin, and ZO-1, and rearrangement of actin filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addolorato, G., de Lorenzi, G., Abenavoli, L., Leggio, L., Capristo, E., & Gasbarrini, G. (2004). Psychological support counselling improves gluten-free diet compliance in coeliac patients with affective disorders. Alimentary Pharmacology & Therapeutics, 777–782.

    Google Scholar 

  • Akobeng, A. K., & Thomas, A. G. (2008). Systematic review: Tolerable amount of gluten for people with coeliac disease. Alimentary Pharmacology & Therapeutics, 27, 1044–1052.

    Article  CAS  Google Scholar 

  • Andringa, G., Lam, K. Y., Chegary, M., Wang, X., Chase, T. N., & Bennett, M. C. (2004). Tissue transglutaminase catalyzes the formation of alpha-synuclein crosslinks in Parkinson’s disease. FASEB Journal, 932–934.

    Google Scholar 

  • Augustin, M. T., Kokkonen, J., & Karttunen, T. J. (2005). Evidence for increased apoptosis of duodenal intraepithelial lymphocytes in cow’s milk sensitive enteropathy. Journal of Pediatriac Gastroenterology Nutrition, 40(3), 352–358.

    Article  Google Scholar 

  • Beaurepaire, C., Smyth, D., & McKay, D. M. (2009). Interferon-gamma regulation of intestinal epithelial permeability. Journal of Interferon Cytokine Research, 29(3), 133–144.

    Article  CAS  Google Scholar 

  • Brusca. (2015). Overview of biomarkers for diagnosis and monitoring of celiac disease. Advances in Clinical Chemistry, 68, 1–55.

    Article  CAS  Google Scholar 

  • Butterworth, J. R., & Louis, L. (2019). Coeliac disease. Medicine, 47(5), 314–319.

    Article  Google Scholar 

  • Catassi, C., Fabiani, E., Iacono, G., D’Agate, C., Francavilla, R., Biagi, F., Volta, U., Accomando, S., Picarelli, A., de Vitis, I., et al. (2007). A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. American Journal of Clinical Nutrition, 160–166.

    Google Scholar 

  • Cellier, C., Delabesse, E., Helmer, C., Patey, N., Matuchansky, C., Jabri, B., Macintyre, E., Cerf-Bensussan, N., & Brousse, N. (2000). Refractory sprue, coeliac disease, and enteropathy-associated T-cell lymphoma. Lancet, 203–208.

    Google Scholar 

  • Cervio, E., Volta, U., Verri, M., et al. (2007). Sera of patients with celiac disease and neurologic disorders evoke a mitochondrial-dependent apoptosis in vitro. Gastroenterology, 133(1), 195–206.

    Article  CAS  Google Scholar 

  • Ciccocioppo, R., Sabatino, A. D., et al. (2002). Mechanisms of villous atrophy in autoimmune enteropathy and coeliac disease. Clinical and Experimental Immunology, 88–93.

    Google Scholar 

  • Clemente, M. G., De Virgiliis, S., Kang, J. S., Macatagney, R., Musu, M. P., Di Pierro, M. R., Drago, S., Congia, M., & Fasano, A. (2003). Early effects of gliadin on enterocyte intracellular signaling involved in intestinal barrier function. Gut, 52, 218–223.

    Article  CAS  Google Scholar 

  • Daum, S., Bauer, U., Foss, H. D., Schuppan, D., Stein, H., Riecken, E. O., & Ullrich, R. (1999). Increased expression of mRNA for matrix metalloproteinases-1 and -3 and tissue inhibitor of metalloproteinase-1 in intestinal biopsy specimens from patients with coeliac disease. Gutology, 44, 17–25.

    CAS  Google Scholar 

  • De Re, V., Magris, R., & Cannizzaro, R. (2017). New insights into the pathogenesis of celiac disease. Frontiers in Medicine, 4, 137.

    Article  Google Scholar 

  • Deora, N. S. (2017). Gluten free detection – A recent insight EC gastroenterology and digestive. System, 148–151.

    Google Scholar 

  • Dewar, D., Pereira, S. P., & Ciclitira, J. (2003). The pathogenesis of Celiac disease. International Journal of Biochemistry, 17–24.

    Google Scholar 

  • Di Sabatino, A., & Corazza, G. R. (2009). Coeliac disease. Lancet, 1480–1493.

    Google Scholar 

  • Di Sabatino, A., Lenti, M. V., Corazza, G. R., Gianfrani, C. (2018). Vaccine Immunotherapy for Celiac Disease. Front Med (Lausanne). 5:187. https://doi.org/10.3389/fmed.2018.00187

  • Dickson, B. C., Streutker, C. J., & Chetty, R. (2006). Coeliac disease: An update for pathologists. Journal of Clinical Pathology, 59(10), 1008–1016.

    Article  CAS  Google Scholar 

  • Dieterich, W., Ehnis, T., Bauer, M., Donner, P., Volta, U., Riecken, E. O., & Schuppan, D. (1997). Identification of tissue transglutaminase as the autoantigen of celiac disease. Nature Medicine, 797–801.

    Google Scholar 

  • Donaldson, J. G. (2015). Immunofluorescence staining. Current Protocol in Cellular Biology, 4–7.

    Google Scholar 

  • Ehrmann, J., Kolek, A., Kodousek, R., et al. (2003). Immunohistochemical study of the apoptotic mechanisms in the intestinal mucosa during children’s coeliac disease. Virchows Archive, 442(5), 453–461.

    Article  CAS  Google Scholar 

  • Arzu, E. (2010). Gluten-sensitive enteropathy (celiac disease): Controversies in diagnosis and classification. Archives of Patholology & Laboratory Medicine, 134(6), 826–836.

    Article  Google Scholar 

  • Esposito, C., Paparo, F., Caputo, I., et al. (2003). Expression and enzymatic activity of small intestinal tissue transglutaminase in celiac disease. American Journal of Gastroenterology, 1813–1820.

    Google Scholar 

  • Farre, C. (2014). The role of serology in celiac disease screening, diagnosis and follow-up. In: L. Rodrigo, & A. S. Pena (Eds.), Celiac disease and non-celiac gluten sensitivity (pp. 151–169). OmniaScience.

    Google Scholar 

  • Fernandez-Jimenez, N., Plaza-Izurieta, L., & Bilbao, J. R. (2014). Genetic markers in celiac disease. In L. Rodrigo & A. S. Pena (Eds.), Celiac disease and non-celiac gluten sensitivity (pp. 103–121). Omnia Science.

    Google Scholar 

  • García-Manzanares, A., & Lucendo, A. J. (2011). Nutritional and dietary aspects of celiac disease. Nutritional Clinical Practice, 163–173.

    Google Scholar 

  • Gass, J., Ehren, J., Strohmeier, G., Isaacs, I., & Khosla, C. (2005). Fermentation, purification, formulation, and pharmacological evaluation of a prolyl endopeptidase from Myxococcus xanthus: Implications for celiac sprue therapy. Biotechnology and Bioengineering, 92, 674–684.

    Article  CAS  Google Scholar 

  • Green, P. H., & Cellier, C. (2007). Celiac disease. National England Journal of Medicine, 1731–1743.

    Google Scholar 

  • Guandalini, S., & Rose, R. (2012). Evolving diagnostic criteria for celiac disease impact. A publication of the University of Chicago Celiac Disease Center.

    Google Scholar 

  • Gujral, N., Freeman, H. J., & Thomson, A. B. R. (2012). Celiac disease: Prevalence, diagnosis, pathogenesis, and treatment. World Journal of Gastroenterology, 18(42), 6036–6059.

    Google Scholar 

  • Hall, N. J., Rubin, G., & Charnock, A. (2009). Systematic review: Adherence to a gluten-free diet in adult patients with coeliac disease. Alimentary Pharmacology, 315–330.

    Google Scholar 

  • Han, A., Newell, E. W., Glanville, J., Fernandez-Becker, N., Khosla, C., Chien, Y. H., & Davis, M. M. (2013). Dietary gluten triggers concomitant activation of CD4+ and CD8+ αβ T cells and gamma delta T cells in celiac disease. Proceedings of the National Academy of Sciences of the United States of America, 13073–13078.

    Google Scholar 

  • Haush, F., Shan, L., Santiago, N. A., Gary, G. M., & Khosla, C. (2002). Intestinal digestive resistance of immunodominant gliadin peptides. American Journal of Physiology. Gastrointestinal and Liver Physiology, 283, 996–1003.

    Article  Google Scholar 

  • Hollon, J., Puppa, E. L., Greenwald, B., Goldberg, E., Guerrerio, A., & Fasano, A. (2015). Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with nonceliac gluten sensitivity. Nutrients, 7(3), 1565–1576.

    Article  CAS  Google Scholar 

  • Kale, S., Hanai, J., Chan, B., et al. (2005). Microarray analysis of in vitro pericyte differentiation reveals an angiogenic program of gene expression. The FASEB Journal, 19(2), 270–271.

    Article  CAS  Google Scholar 

  • Kapoerchan, V. V., Wiesner, M., Overhand, M., van der Marel, G. A., Koning, F., & Overkleeft, H. S. (2008). Design of azidoproline containing gluten peptides to suppress CD4+ T-cell responses associated with celiac disease. Bioorganic and Medical Chemistry, 2053–2062.

    Google Scholar 

  • Karell, K., Louka, A. S., Moodie, S. J., Ascher, H., Clot, F., Greco, L., Ciclitira, P. J., Sollid, L. M., & Partanen, J. (2003). HLA types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: Results from the European Genetics Cluster on Celiac Disease. Human Immunology, 64, 469–477.

    Article  CAS  Google Scholar 

  • Kelly, C., Bai, J., Liu, E., & Leffler, D. (2015). Celiac disease: Clinical spectrum and management. Gastroenterology, 1175–1186.

    Google Scholar 

  • Khosla, C. (2017). Celiac disease: Lessons for and from chemical biology. ACS Chemical Biology, 12(6), 1455–1459.

    Article  CAS  Google Scholar 

  • Kim, C. Y., Quarsten, H., Bergseng, E., Khosla, C., & Sollid, L. M. (2004). Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proceedings of the National Academy of Science, 4175–4179.

    Google Scholar 

  • Lai, T. S., Liu, Y., Tucker, T., Daniel, K. R., Sane, D. C., Toone, E., Burke, J. R., Strittmatter, W. J., & Greenberg, C. S. (2008). Identification of chemical inhibitors to human tissue transglutaminase by screening existing drug libraries. Chemistry and Biology, 969–978.

    Google Scholar 

  • Lai, T. S., Davies, C., & Greenberg, C. S. (2010). Human tissue transglutaminase is inhibited by pharmacologic and chemical acetylation. Protein Science, 19, 229–235. https://doi.org/10.1002/pro.301

    Article  CAS  PubMed  Google Scholar 

  • Lanzini, A., Lanzarotto, F., Villanacci, V., Mora, A., Bertolazzi, S., Turini, D., Carella, G., Malagoli, A., Ferrante, G., Cesana, B. M., et al. (2009). Complete recovery of intestinal mucosa occurs very rarely in adult coeliac patients despite adherence to gluten-free diet. Alimentary Pharmacology, 29, 1299–1308.

    Article  CAS  Google Scholar 

  • Lee, A. R., Ng, D. L., Zivin, J., & Green, P. H. (2007). Economic burden of a gluten-free diet. Journal of Human Nutrition and Dietetics, 423–430.

    Google Scholar 

  • Leffler, D. A., Edwards-George, J., Dennis, M., Schuppan, D., Cook, F., Franko, D. L., Blom-Hoffman, J., & Kelly, C. P. (2008). Factors that influence adherence to a gluten-free diet in adults with celiac disease. Digestion Science, 1573–1581.

    Google Scholar 

  • Lequin, R. M. (2005). Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clininal Chemistry, 2415–2418.

    Google Scholar 

  • Lerner, P., Jeremias, S., Neidhofer, T., & Matthias. (2017). Comparison of the reliability of 17 celiac disease associated bio-markers to reflect intestinal damage. Journal of Clinical Cell Immunology, 8, 1000486.

    Google Scholar 

  • Lionetti, E., & Catassi, C. (2011). New clues in celiac disease epidemiology, pathogenesis, clinical manifestations, and treatment. International Review in Immunology, 219–231.

    Google Scholar 

  • Liu, S., Cerione, R. A., & Clardy, J. (2002). Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proceedings of the National Academy of Science, 99, 2743–2747.

    Article  CAS  Google Scholar 

  • Lo, W., Sano, K., Lebwohl, B., Diamond, B., & Green, P. H. (2003). Changing presentation of adult celiac disease. Digtial Science, 48, 395–398.

    Google Scholar 

  • Lorand, L. (2007). Crosslinks in blood: Transglutaminase and beyond. The FASEB Journal, 21, 1627–1632.

    Article  CAS  Google Scholar 

  • Lorand, L., & Graham, R. M. (2003). Transglutaminases: Crosslinking enzymes with pleiotropic functions. Nature Reviews Molecular Cell Biology, 140–156.

    Google Scholar 

  • Louka, A. S., Nilsson, S., Olsson, M., Talseth, B., Lie, B. A., Ek, J., Gudjonsdottir, A. H., Ascher, H., & Sollid, L. M. (2002). HLA in coeliac disease families: A novel test of risk modification by the “other” haplotype when at least one DQA1*05-DQB1*02 haplotype is carried. Tissue Antigens, 147–154.

    Google Scholar 

  • Margaritte-Jeannin, P., Babron, M. C., Bourgey, M., Louka, A. S., Clot, F., Percopo, S., Coto, I., Hugot, J. P., Ascher, H., Sollid, L. M., Greco, L., & Clerget-Darpoux, F. (2004). HLA-DQ relative risks for coeliac disease in European populations: A study of the European Genetics Cluster on Coeliac Disease. Tissue Antigens, 63, 562–567.

    Article  CAS  Google Scholar 

  • Marsh, M. N., & Crowe, P. T. (1995). Morphology of the mucosal lesion in gluten sensitivity. Baillière’s Clinical Trials in Gastroenterology, 9(2), 273–293.

    Article  CAS  Google Scholar 

  • Marti, T., Molberg, O., Li, Q., Gray, G. M., Khosla, C., & Sollid, L. M. (2005). Prolyl endopeptidase-mediated destruction of T cell epitopes in whole gluten: Chemical and immunological characterization. Journal of Pharmacology Experiments, 312, 19–26.

    Article  CAS  Google Scholar 

  • Mazzarella, G., Maglio, M., Paparo, F., Nardone, G., Stefanile, R., Greco, L., van de Wal, Y., Kooy, Y., Koning, F., Auricchio, S., & Troncone, R. (2003). An immunodominant DQ8 restricted gliadin peptide activates small intestinal immune response in in vitro cultured mucosa from HLA-DQ8 positivebut not HLA-DQ8 negative coeliac patients. Gut, 52, 57–62.

    Article  CAS  Google Scholar 

  • Miura, N., Yamamoto, M., Fukutake, M., et al. (2005). Anti-celiac disease 3 induces biphasic apoptosis in murine intestinal epithelial cells: Possible involvement of the Fas/Fas ligand system in different T cell compartments. International Journal of Immunology, 513–522.

    Google Scholar 

  • Molberg, McAdam, S. N., & Sollid, L. M. (2000). Role of tissue transglutaminase in celiac disease. Journal of Pediatric Gastroenterology and Nutrition, 232–240.

    Google Scholar 

  • Molberg, O., Solheim Flaete, N., Jensen, T., Lundin, K. E., Arentz-Hansen, H., Anderson, O. D., Kjersti Uhlen, A., & Sollid, L. M. (2003). Intestinal T-cell responses to high-molecular-weight glutenins in celiac disease. Gastroenterology, 337–344.

    Google Scholar 

  • Moss, S. F., Attia, L., Scholes, J. V., Walters, J. R., & Holt, P. R. (1996). Increased small intestine apoptosis in celiac disease. Gut, 39(6), 811–817.

    Article  CAS  Google Scholar 

  • Myrsky, E., Kaukinen, K., Syrjänen, M., Korponay-Szabó, I. R., Mäki, M., & Lindfors, K. (2008). Coeliac disease-specific autoantibodies targeted against transglutaminase 2 disturb angiogenesis. Clinical and Experimental Immunology, 111–119.

    Google Scholar 

  • Naluai, A. T., Nilsson, S., Gudjonsdottir, A. H., Louka, A. S., Ascher, H., Ek, J., Hallberg, B., Samuelsson, L., Kristiansson, B., Martinsson, T., Nerman, O., Sollid, L. M., & Wahlstrom, J. (2001). Genome-wide linkage analysis of Scandinavian affected sib-pairs supports presence of susceptibility loci for celiac disease on chromosomes 5 and 11. European Journal of Human, 938–944.

    Google Scholar 

  • Nasr, I., Leffler, D. A., & Ciclitira, P. J. (2012). Management of celiac disease. Gastrointestinal Endoscopy Clinical Nutrition, 695–704.

    Google Scholar 

  • Niewinski, M. M. (2008). Advances in celiac disease and gluten-free diet. Journal of the American Dietetic Association, 661–672.

    Google Scholar 

  • NIH Consensus Development Conference on Celiac Disease. NIH Consens State Sci Statements. Available online: http://consensus.nih.gov/2004/2004celiacdisease118.html. Accessed 21 Nov 2013.

  • Olsson, C., Hörnell, A., Ivarsson, A., & Sydner, Y. M. (2008). The everyday life of adolescent coeliacs: Issues of importance for compliance with the gluten-free diet. Journal of Human Nutrition and Diet, 359–367.

    Google Scholar 

  • Palejwala, A. A., & Watson, A. J. M. (2000). Apoptosis and gastrointestinal disease. Journal of Pediatrica Gastroenterology Nutrition, 356–361.

    Google Scholar 

  • Paterson, B. M., Lammers, K. M., Arrieta, M. C., Fasano, A., & Meddings, J. B. (2007). The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: A proof of concept study. Alimentary Pharmacology, 26(5), 757–766.

    Article  CAS  Google Scholar 

  • Pinkas, D. M., Strop, P., Brunger, A. T., & Khosla, C. (2007). Transglutaminase 2 undergoes a large conformational change upon activation. Plasma Biology, 327.

    Google Scholar 

  • Piper, J. L., Gray, G. M., & Khosla, C. (2004). Effect of prolyl endopeptidase on digestive-resistant gliadin peptides in vivo. Journal of Pharmacology Experiments, 213–219.

    Google Scholar 

  • Ploski, R., Ek, J., Thorsby, E., & Sollid, L. M. (1993). On the HLA-DQ(# 1*0501, " 1*0201)-associated susceptibility in celiac disease: a possible gene dosage effect of DQB1*0201. Tissue Antigens, 173–177.

    Google Scholar 

  • Porta, R., Gentile, V., Esposito, C., Mariniello, L., & Auricchio, S. (1990). Cereal dietary proteins with sites for cross-linking by transglutaminase. Phytochemistry, 2801–2804.

    Google Scholar 

  • Pyle, G. G., Paaso, B., Anderson, B. E., Allen, D. D., Marti, T., Li, Q., Siegel, M., Khosla, C., & Gray, G. M. (2005). Effect of pretreatment of food gluten with prolyl endopeptidase on gluteninduced malabsorption in celiac sprue. Clinical Gastroenterology, 3, 687–694.

    CAS  Google Scholar 

  • Rashtak, S., Snyder, M. R., Pittock, S. J., & Wu, T.-T. (2011). Serology of celiac disease in gluten-sensitive ataxia or neuropathy: Role of deamidated gliadin antibody. Journal of Neuroimmunology, 230, 130–134.

    Article  CAS  Google Scholar 

  • Rossi, F., Bellini, G., Tolone, C., Luongo, L., Mancusi, S., Papparella, A., Sturgeon, C., Fasano, A., Nobili, B., Perrone, L., Maione, S., & del Giudice, E. M. (2012). The cannabinoid receptor type 2 Q63R variant increases the risk of celiac disease: Implication for a novel molecular biomarker and future therapeutic intervention. Pharmacological Research, 66(1), 8.

    Article  Google Scholar 

  • Saturni, L., Ferretti, G., & Bacchetti, T. (2010). The gluten-free diet: Safety and nutritional quality. Nutrients, 16–34.

    Google Scholar 

  • Schuppan, D., Junker, Y., & Barisani, D. (2009). Celiac disease: From pathogenesis to novel therapies. Gastroenterology, 1912–1933.

    Google Scholar 

  • See, J., & Murray, J. A. (2006). Gluten-free diet: The medical and nutrition management of celiac disease. Nutrition in Clinical Practice, 21, 1–15.

    Article  Google Scholar 

  • Shan, L., Molberg, O., Parrot, I., Hausch, F., Filiz, F., Gray, G. M., Sollid, L. M., & Khosla, C. (2002). Structural basis for gluten intolerance in celiac sprue. Science, 297, 2275–2279.

    Article  CAS  Google Scholar 

  • Shewry, P. R., Tatham, A. S., & Kasarda, D. D. (1992). Cereal proteins and celiac disease. In M. N. Marsh (Ed.), Coeliac disease (pp. 305–342). Blackwell Scientific Publications.

    Google Scholar 

  • Silvester, J. A., & Rashid, M. (2010). Long-term management of patients with celiac disease: Current practices of gastroenterologists in Canada. Canadian Journal of Gastroenterology, 499–509.

    Google Scholar 

  • Simón, E., Larretxi, I., Churruca, I., Arrate, L., Bustamante, M. A., Virginia, N., María, D. P., Fernández-Gil, & Jonatan, M. (2017). Nutritional and analytical approaches of gluten-free diet in celiac disease. Springer briefs in food, health, and nutrition. ISBN 978-3-319-53342-1.

    Google Scholar 

  • Singh, U. S., Erickson, J. W., & Cerione, R. A. (1995). Identification and biochemical characterization of an 80 kilodalton GTP-binding transglutaminase from rabbit liver nuclei. Biochemistry, 34, 15863–15871.

    Article  CAS  Google Scholar 

  • Solid, L. M. (2000). Molecular basis of celiac disease. Annual Review of Immunology, 53–81.

    Google Scholar 

  • Sollid, L. M., & Lundin, K. E. A. (2009). Diagnosis and treatment of celiac disease. Mucosal Immunology, 3–7.

    Google Scholar 

  • Stamnaes, J., Pinkas, D. M., Fleckenstein, B., Khosla, C., & Sollid, L. M. (2010). Redox regulation of transglutaminase 2 activity. Journal of Bio-Chemistry, 25402–25409.

    Google Scholar 

  • Stevens, L., & Rashid, M. (2008). Gluten-free and regular foods: A cost comparison. Canadian Journal of Dietetary Practice Research, 147–150.

    Google Scholar 

  • Tripathi, A., Lammers, K. M., Goldblum, S., Shea-Donohue, T., Netzel-Arnett, S., Buzza, M. S., Antalis, T. M., Vogel, S. N., Zhao, A., Yang, S., Arrietta, M. C., Meddings, J. B., & Fasano, A. (2009). Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proceedings of the National Academy of Science United States of America, 16799–16804.

    Google Scholar 

  • Wood Heickman, L. K., DeBoer, M. D., & Fasano, A. (2020). Zonulin as a potential putative biomarker of risk for shared type 1 diabetes and celiac disease autoimmunity. Diabetes Metabolism Research, 363–309.

    Google Scholar 

  • Xia, J., Bergseng, E., Fleckenstein, B., Siegel, M., Kim, C. Y., Khosla, C., & Sollid, L. M. (2007). Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Medical Chemistry, 6565–6573.

    Google Scholar 

  • Yokoyama, S., Watanabe, N., Sato, N., Perera, P. Y., Filkoski, L., Tanaka, T., Miyasaka, M., Waldmann, T. A., Hiroi, T., & Perera, L. P. (2009). Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes. Proceedings of the National Academy of Sciences of the United States of America, 15849–15854.

    Google Scholar 

  • Zarkadas, M., Cranney, A., Case, S., Molloy, M., Switzer, C., Graham, I. D., Butzner, J. D., Rashid, M., Warren, R. E., & Burrows, V. (2006). The impact of a gluten-free diet on adults with celiac disease: Results of a national survey. Journal of Human Nutrition and Dietetics, 41–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukhopadhyay, C.D. (2022). Current Advances in Celiac Disease: Consequences and Improvement Strategies. In: Singh Deora, N., Deswal, A., Dwivedi, M. (eds) Challenges and Potential Solutions in Gluten Free Product Development. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-88697-4_1

Download citation

Publish with us

Policies and ethics