Skip to main content

Bayesian Analysis of Stochastic Processes in Reliability

  • Chapter
  • First Online:
Bayesian Inference and Computation in Reliability and Survival Analysis

Part of the book series: Emerging Topics in Statistics and Biostatistics ((ETSB))

  • 509 Accesses

Abstract

In reliability, models involving complex stochastic processes play an important role. This type of model allows analysts to handle many problems such as the missing data or uncertain data problem. The Bayesian approach relying on prior belief or expertise appears to be a natural tool in such situations. Thus the Bayesian approach provides efficient methods for reliability analysis with stochastic processes. The objective of this chapter is to describe the main techniques to make Bayesian inference for stochastic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bar-Lev, S.K., Lavi, I., Reiser, B.: Bayesian inference for the power law process. Ann. Inst. Stat. Math. 44(4), 623–639 (1992)

    Article  MATH  Google Scholar 

  2. Bar-Lev, S.K., Bshouty, D., van der Duyn Schouten, F.A.: Operator-based intensity functions for the nonhomogeneous Poisson process. Math. Methods Statist. 25(2), 79–98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bar-Lev, S.K., van der Duyn Schouten, F.A.: The exponential Power-Law Process for the nonhomogeneous Poisson process and bathtub data. Int. J. Reliab. Qual. Saf. Eng. 27(04), 2050011 (2020)

    Article  Google Scholar 

  4. Berger, J.: Statistical decision theory and Bayesian analysis. Springer Series in Statistics (2010)

    Google Scholar 

  5. Broemeling, L.D.: Bayesian Inference of Stochastic Processes. CRC Press, Boca Raton (2018)

    MATH  Google Scholar 

  6. Calabria, R., Guida, M., Pulcini, G.: Bayesian estimation of prediction intervals for a power law process. Commun. Stat. Theory Methods 19, 3023–3035 (1990)

    Article  Google Scholar 

  7. Campodónico, S., Singpurwalla, n.d.: A Bayesian analysis of the logarithmic-Poisson execution time model based on expert opinion and failure data. IEEE Trans. Softw. Eng. 20(9), 677–683 (1994)

    Google Scholar 

  8. Campodónico, S., Singpurwalla, n.d.: Inference and predictions from Poisson point processes incorporating expert knowledge. J. Am. Stat. Assoc. 90(429), 220–226 (1995)

    Google Scholar 

  9. Chen, Z.: Empirical Bayes analysis on the power law process with natural conjugate priors. J. Data Sci. 8, 139–149 (2010)

    Article  Google Scholar 

  10. Chen, Y., Singpurwalla, n.d.: Unification of software reliability models by self-exciting point processes. Adv. Appl. Probab. 29, 337–352 (1997)

    Google Scholar 

  11. Cox, D.R.: Some statistical methods connected with series of events. J. R. Stat. Soc. B, 17, 129–164 (1955)

    MathSciNet  MATH  Google Scholar 

  12. Cox, D.R.: Regression models and life-tables. J. R. Stat. Soc. B 34, 187–2020 (1972)

    MathSciNet  MATH  Google Scholar 

  13. Cox D.R.: The statistical analysis of dependencies in point processes. In Lewis, P.A.W. (ed.) Stochastic Point Processes, pp. 55–56, Wiley, Hoboken (1972)

    Google Scholar 

  14. Cox, D.R., Lewis, P.A.: Statistical Analysis of Series of Events. Methuen, London (1966)

    Book  MATH  Google Scholar 

  15. Dauxois, J.-Y.: Bayesian inference for linear growth birth and death processes. J. Stat. Plan. Infer. 121, 1–19 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daley, D.J., Vere Jones, D.: An Introduction to the Theory of Point Processes. Springer, Berlin (2003)

    MATH  Google Scholar 

  17. de Oliveira, M.D., Colosimo, E.A., Gilardoni, G.L.: Bayesian inference for power law process with application in repairable systems. J. Stat. Plan. Infer. 5, 1151–1160 (2012)

    Article  MATH  Google Scholar 

  18. Do, V.C., Gouno, E.: A conjugate prior for Bayesian analysis of the power-law process. In: Applied Mathematics in Engineering and Reliability, pp. 3–8. CRC Press, Balkema (2016)

    Google Scholar 

  19. Duane, J.T.: Learning curve approach to reliability monitoring. IEEE Trans. Aerosp. Electron. Syst. 2, 563–566 (1964)

    Article  Google Scholar 

  20. Dwass, M.: Extremal processes. Ann. Math. Stat. 35, 1718–1725 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  21. Finkelstein, J. M.: Confidence bounds on the parameters of the Weibull process. Technometrics 18, 115–117 (1976)

    Article  MATH  Google Scholar 

  22. Gaudoin, O., Ledoux, J.: ModṔelisation aléatoire en fiabilité des logiciels. Ed. Lavoisier (2007)

    Google Scholar 

  23. Goel, A.L., Okumoto, K.: An analysis of recurrent software failures on a real-time control system. In: Proceedings of ACM Conference, Washington, pp. 496–500 (1978)

    Google Scholar 

  24. Goel, A.L., Okumoto, K.: Time-dependent error detection rate model for software reliability and other performance measure. IEEE Trans. Reliab. R-28, 206–211 (1979)

    Article  MATH  Google Scholar 

  25. Guida, M., Calabria, R., Pulcini, G.: Bayes inference for a non-homogeneous Poisson process with power intensity law. IEEE Trans. Reliab. 38, 603–609 (1989)

    Article  MATH  Google Scholar 

  26. Hawkes, A.G.: Spectra of some self-exciting and mutually exciting point processes. Biometrika 58(1), 83–90 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  27. Higgins, J.J., Tsokos, C.P.: A quasi-Bayes estimate of the failure intensity of a reliability-growth model. IEEE Trans. Reliab. 30, 471–475 (1981)

    Article  MATH  Google Scholar 

  28. Hirata, T., Okamura, H., Dohi, T.: A Bayesian inference tool for NHPP-based software reliability assessment. Fut. Gen. Inf. Technol. 5899, 225–236 (2009)

    Google Scholar 

  29. Hjorth, U.: A reliability distribution with increasing, decreasing, constant, and bathtub-shaped failure rates. Technometrics 22, 99–107 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, Y.S., Bier, V.M.: A natural conjugate prior for the non-homogeneous Poisson process with a power law intensity function. Commun. Stat. Simul. Comput. 27, 525–551 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Huang, Y.S., Bier, V.M.: A natural conjugate prior for the non-homogeneous Poisson process with an exponential law intensity. Commun. Stat. Theory Methods 25, 1479–1509 (1999)

    Article  MATH  Google Scholar 

  32. Insua, R.D., Ruggeri, F., Wiper, M.P.: Bayesian Analysis of Stochastic Process Models. Wiley, Hoboken (2012)

    Book  MATH  Google Scholar 

  33. Jelinski, Z., Moranda, P.: Software reliability research. In: Freiburger, W. (ed.) Statistical Computer Performance Evaluation, pp. 465–484. Academic Press, New York (1972)

    Chapter  Google Scholar 

  34. Jewell, W.S.: Bayesian extension to a basic model of software reliability. IEEE Trans. Softw. Eng. 11, 1465–1471 (1985)

    Article  Google Scholar 

  35. Kamranfar, H., Etminan, J., Chankandi, M.: Statistical inference for a repairable system subject to shocks: classical vs. Bayesian. J. Stat. Comput. Simul. 90(1), 112–137 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Keiding, N.: Maximum likelihood estimation in the birth-and-death process. Ann. Stat. 3(2), 363–372 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kijima, M., Li, H., Shaked, M.: Stochastic processes in reliability. Handbook Stat. 19, 471–510 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kundu, S., Nayak, T.K., Bose, S.: Are nonhomogeneous Poisson process models preferable to general-order statistics models for software reliability estimation? In: Statistical Models and Methods for Biomedical and Technical Systems, pp. 137–152 (2008)

    Google Scholar 

  39. Kuo, L., Yang, T.Y.: Bayesian computation of software reliability. J. Comput. Graph. Stat. 4(1), 65–82 (1995)

    Google Scholar 

  40. Kuo, L., Yang, T.Y.: Bayesian computation for nonhomogeneous Poisson processes in software reliability. J. Am. Stat. Assoc. 91, 763–773 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kyparisis, J., Singpurwalla, n.d.: Bayesian inference for the Weibull process with applications to assessing software reliability growth and predicting software failures. Comput. Sci. Stat. 57–64 (1985)

    Google Scholar 

  42. Langberg, N., Singpurwalla, n.d.: A unification of some software reliability models. SIAM J. Sci. Stat. Comput. 6, 781–790 (1985)

    Google Scholar 

  43. Littlewood, B.: The Littlewood-Verrall model for software reliability compared with some rivals. J. Syst. Softw. 1, 251–258 (1980)

    Article  Google Scholar 

  44. Littlewood, B.: Stochastic reliability growth: a model for fault-removal in computer program and hardware designs. IEEE Trans. Reliab. R-40(4), 313–320 (1981)

    Article  Google Scholar 

  45. Littlewood, D., Verrall, J.L.: A Bayesian reliability growth model for computer software. J. R. Stat. Soc.: Ser. C: Appl. Stat. 22(3), 332–346 (1973)

    Google Scholar 

  46. Lo, A.Y.: Bayesian nonparametric statistical inference for Poisson processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 59, 55–66 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mazzuchi, T.A., Soyer, R.: A Bayes empirical-Bayes model for software reliability. IEEE Trans. Reliab. 37(2), 248–254 (1988)

    Article  MATH  Google Scholar 

  48. Mc Collin, C.: Intensity functions for nonhomogeneous Poisson processes. In: Ruggieri, F., Kenett, K., Faltin, F. (eds.) Encyclopedia of Statistics in Quality and Reliability, pp. 861–868. John Wiley & Sons, Hoboken (2007)

    Google Scholar 

  49. McDaid, K., Wilson, S.P.: Deciding how long to test software. J. R. Stat. Soc. Ser. D (Stat.) 50(2), 117–134 (2001)

    Google Scholar 

  50. Meinhold, R.J., Singpurwalla, n.d.: Bayesian analysis of a commonly used model for describing software failures. Statistician 32, 168–173 (1983)

    Article  Google Scholar 

  51. Merrick, J.R., Soyer, R., Mazzuchi, T.A.: Are maintenance practices for railroad track effective? J. Am. Stat. Assoc. 100(469), 17–25 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Moranda, P.B.: Prediction of software reliability and its applications. In: Proceedings of the Annual Reliability and Maintainability Symposium, Washington, pp. 327–332 (1975)

    Google Scholar 

  53. Mudholkar, G.S., Srivastava, D.K., Friemer, M.: The exponentiated-Weibull family: a reanalysis of the bus-motor failure data. Technometrics 37, 436–445 (1995)

    Article  MATH  Google Scholar 

  54. Musa, J.D., Okumoto, K.: A logarithmic Poisson execution time model for software reliability measurement. In: Proceedings of Seventh International Conference on Software Engineering, Orlando, pp. 230–238 (1984)

    Google Scholar 

  55. Nakagawa, T.: Stochastic processes with applications to reliability theory. In: Springer Series in Reliability Engineering. Springer, Berlin (2011)

    Google Scholar 

  56. Ogata, Y.: Statistical models for earthquake occurrences and residual analysis for point processes. Ann. Instit. Stat. Math. 83, 9–27 (1988)

    Google Scholar 

  57. Okamura, H., Sakoh, T., Dohi, T.: Variational Bayesian approach for exponential software reliability model. In: Proceeding 10th IASTED International Conference on Software Engineering and Applications, pp. 82–87 (2006)

    Google Scholar 

  58. Okamura, H., Grottke, M., Dohi, T., Trivedi, K.S.: Variational Bayesian approach for interval estimation of NHPP-based software reliability models. In: Proceeding of the International Conference on Dependable Systems and Networks, pp. 698–707 (2007)

    Google Scholar 

  59. Peruggia, M., Santner, T.: Bayesian analysis of time evolution of earthquakes. J. Am. Stat. Assoc. 91, 1209–1218 (1996)

    Article  MATH  Google Scholar 

  60. Pievaloto, A., Ruggeri, F., Argiento, R.: Bayesian analysis and prediction of failures in underground trains. Qual. Reliab. Eng. Int. 19, 327–336 (2003)

    Article  Google Scholar 

  61. Raftery, A.E.: Inference and prediction for a general order statistic model with unknown population size. J. Am. Stat. Assoc. 82(400), 1163–1158 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  62. Ryan, K.J.: Some flexible families of intensities for non-homogeneous Poisson process models and their Bayes inference. Qual. Reliab. Eng. Int. 19(2), 171–181 (2003)

    Article  Google Scholar 

  63. Ramirez Cid, J.E., Achcar, J.A.: Bayesian inference for nonhomogeneous Poisson processes in software reliability models assuming nonmonotonic intensity functions. Comput. Stat. Data Anal. 32, 147–159 (1999)

    Article  Google Scholar 

  64. Ridgon, S.E., Basu, A.P.: Statistical Methods for the Reliability of Repairable Systems. John Wiley and Sons, Inc. New-York (2000)

    Google Scholar 

  65. Ruggeri, F., Sivaganesan, S.: On modeling change points in non-homogeneous Poisson processes. Stat. Infer. Stoch. Process 8, 311–329 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ruggeri, F., Soyer, R.: Advances in Bayesian software reliability modelling. In: Bedford, T., Quigley J., Walls L., Alkali, B., Daneshkhah, A., Hardman, G. (eds.) Advances in Mathematical Modeling for Reliability. IOS Press, Amsterdam, pp. 165–176 (2008)

    Google Scholar 

  67. Sen, A.: Bayesian estimation and prediction of the intensity of the power law process. J. Stat. Comput. Simul. 72, 613–631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  68. Shick, G.J., Wolverton, R.W.: Assessment of software reliability. In: Proceedings in Operations Research, pp. 395–422. Physica-Verlag, Vienna (1978)

    Google Scholar 

  69. Singpurwalla, N.: Survival in dynamic environments. Stat. Sci. 1, 86–103 (1995)

    MATH  Google Scholar 

  70. Singpurwalla, N., Wilson, S.P.: Statistical Method in Software Engineering, vol. 1, pp. 86–103. Springer, New York (1999)

    Google Scholar 

  71. Snyder, D.L., Miller, M.L.: Random Point Processes in Time and Space. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  72. Soland, R.M.: Bayesian analysis of Weibull process with unknown scale and its application to acceptance sampling. IEEE Trans. Reliab. 17(4), 84–90 (1968)

    Article  Google Scholar 

  73. Soland, R.M.: Bayesian analysis of Weibull process with unknown scale and shape parameters. IEEE Trans. Reliab. 18(4), 181–184 (1969)

    Article  Google Scholar 

  74. Soyer, R.: Software reliability. Wiley Interdisciplinary Reviews: Computational Statistics, vol. 3, pp. 269–281 (2011)

    Article  Google Scholar 

  75. Vicini, L., Hotta, L.K., Achcar J.A.: Non-homogeneous Poisson processes applied to count data: a Bayesian approach considering different prior distributions. J. Environ. Protect. 3, 1336–1345 (2012)

    Article  Google Scholar 

  76. Washburn, A: A sequential Bayesian generalization of the Jelinski–Moranda software reliability model. Nav. Res. Logist. 53, 354–362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  77. Yang, T.A., Kuo, L.: Bayesian computation for the superposition of nonhomogeneous Poisson processes. Can. J. Stat. 27(3), 547–556 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  78. Yu, J.W., Tian, G.L., Tang, M.L.: Predictive analysis for nonhomogeneous Poisson processes with power law using Bayesian approach. Comput. Stat. Data Anal. 51, 4254–4258 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evans Gouno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gouno, E. (2022). Bayesian Analysis of Stochastic Processes in Reliability. In: Lio, Y., Chen, DG., Ng, H.K.T., Tsai, TR. (eds) Bayesian Inference and Computation in Reliability and Survival Analysis. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-88658-5_6

Download citation

Publish with us

Policies and ethics